# Number Talks: developing fluency, flexibility, and conceptual understanding #AuthorAndIllustrate

How might we work on fluency (accuracy, flexibility, efficiency, and understanding) as we continue to teach and learn with students? What if our young learners are supposed to be fluent with their multiplication facts, but… they. ..just…aren’t!?

It really isn’t a surprise, right? Children learn and grow at different rates. We know that because we work with young learners every day.  The question isn’t “Why aren’t they fluent right now?” It isn’t. It just isn’t. The question should be and is:

“What are we going to do, right now, to make this better
for every and each learner in our care?”

In Making Number Talks Matter, Cathy Humphreys and Ruth Parker write:

Multiplication Number Talks are brimming with potential to help students learn the properties of real numbers (although they don’t know it yet), and over time, the properties come to life in students’ own strategies. (Humphreys, 62 p.)

Humphreys and Parker continue:

Students who have experienced Number Talks come to algebra understanding the arithmetic properties because they have used them repeatedly as they reasoned with numbers in ways that made sense to them. This doesn’t happen automatically, though. As students use these properties, one of our jobs as teachers is to help students connect the strategies that make sense to them to the names of properties that are the foundation of our number system. (Humphreys, 77 p.)

So, that is what we will do. We commit to deeper and stronger mathematical understanding. And, we take action.

This week our Wednesday workshop focused on Literacy, Mathematics, and STEAM in grade level bands.  Teachers of our 4th, 5th, and 6th graders gathered to work together, as a teaching team, to take direct action to strengthen and deepen our young students’ mathematical fluency.

We began with the routine How Do You Know? routine from NCTM’s High-Yield Routines for Grades K-8 using this sentence:

# 81-25=14×4 How do you know?

Here’s how I anticipated the ways learners might think.

Anticipating students’ responses takes place before instruction, during the planning stage of your lesson. This practice involves taking a close look at the task to identify the different strategies you expect students to use and to think about how you want to respond to those strategies during instruction. Anticipating helps prepare you to recognize and make sense of students’ strategies during the lesson and to be able to respond effectively. In other words, by carefully anticipating students’ responses prior to a lesson, you will be better prepared to respond to students during instruction. (Smith, 37 p.)

How many strategies and tools do we use when modeling multiplication in our classroom? It is a matter of inclusion.

It is a matter of inclusion.

Every learner wants and needs to find their own thinking in their community. This belonging, sharing, and learning matters. We make sense of mathematics and persevere. We make sense of others thinking as they learn to construct arguments and show their thinking so that others understand.

Humphreys and Parker note:

They are learning that they have mathematical ideas worth listening to—and so do their classmates. They are learning not to give up when they can’t get an answer right away because they are realizing that speed isn’t important. They are learning about relationships between quantities and what multiplication really means. They are using the properties of the real numbers that will support their understanding of algebra. (Humphreys, 62 p.)

As teachers, we must anticipate the myriad of ways students think and learn. And, as Christine Tondevold (@BuildMathMinds) tells us:

The strategies are already in the room.

Our job is to connect mathematicians and mathematical thinking.

From NCTM’s Principles to Actions:

Effective teaching of mathematics engages students in making connections among mathematical representations to deepen understanding of mathematics concepts and procedures and as tools for problem solving.

And:

Effective teaching of mathematics builds fluency with procedures on a foundation of conceptual understanding so that students, over time, become skillful in using procedures flexibly as they solve contextual and mathematical problems.

What if we take up the challenge to author and illustrate mathematical understanding with and for our students and teammates?

Let’s work together to use and connect mathematical representations as we build procedural fluency from conceptual understanding.

Humphreys, Cathy. Making Number Talks Matter. Stenhouse Publishers. Kindle Edition.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. Print.

Smith, Margaret (Peg) S.. The Five Practices in Practice [Middle School] (Corwin Mathematics Series). SAGE Publications. Kindle Edition.

# Agenda: Embolden Your Inner Mathematician (10.17.18) Week 6

Week Six of Embolden Your Inner Mathematician

We commit to curation of best practices, connections between mathematical ideas, and communication to learn and share with a broad audience.

Course Goals:
At the end of the semester, teacher-learners should be able to say:

• I can work within NCTM’s Eight Mathematical Teaching Practices for strengthening the teaching and learning of mathematics.
• I can exercise mathematical flexibility to show what I know in more than one way.
• I can make sense of tasks and persevere in solving them.

Today’s Goals

At the end of this session, teacher-learners should be able to say:

• I can use and connect mathematical representations. (#NCTMP2A)
• I can make sense of tasks and persevere in solving them. (#SMP-1)
• I can show my work so that a reader understands without have to ask me questions.

Use and connect mathematical representations: Effective teaching of mathematics engages students in making connections among mathematical representations to deepen understanding of mathematics concepts and procedures and as tools for problem solving.

In ambitious teaching, the teacher engages students in challenging tasks and collaborative inquiry, and then observes and listens as students work so that she or he can provide an appropriate level of support to diverse learners.  The goal is to ensure that each and every student succeeds in doing meaningful, high-quality work, not simply executing procedures with speed and accuracy.(Smith, 4 pag.)

Learning Progressions for today’s goals:

• I can use and connect mathematical representations. (#NCTMP2A)

• I can show my work so that a reader understands without have to ask me questions.

• Visual representation of multiplication, exponents, subtraction. (Connect 2nd-5th grade with Algebra I and II.)
• Apples and Bananas task (see slide deck)

What the research says:

Not only should students be able to understand and translate between modes of representations but they should also translate within a specific type of representation. [Smith, pag. 139]

Equitable teaching of mathematics includes a focus on multiple representations. This includes giving students choice in selecting representations and allocating substantial instructional time and space for students to explore, construct, and discuss external representations of mathematical ideas. [Smith, pag. 141]

Too often students see mathematics as isolated facts and rules to be memorized. [Smith, pag. 141]

\Anticipated work and thinking:

Slide deck:

[Cross posted at Sum it up and Multiply it out]

Gough, Jill, and Jennifer Wilson. “#LL2LU Learning Progressions.” Experiments in Learning by Doingor Easing the Hurry Syndrome.WordPress, 04 Aug. 2014. Web. 11 Mar. 2017.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 21) Print.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.

# Focus on Learning: Establish Mathematics Goals to Focus Learning

Worry in her beautiful, tired, sad eyes communicates so much. Strain across her face makes my heart ache. As we sit down for coffee with our children playing nearby, she blurts, “I don’t know how to make myself clearer, Jill. They just don’t, won’t, can’t – I don’t know – get it!” I sigh into my coffee which causes steam to fog up my glasses, and she laughs through her tears.

Knowing that I am an evidence-interested educator, she pulls out her unit plans for me to see and offer feedback. “You were in our class yesterday. What I can I do better…? How do I help them learn?” Love and concern for her students is evident in her thoughtfulness, craftsmanship, and design.

I was in this class yesterday and had been for many days of the unit. I go again and again, because I am learning from her and with her students. This strong, organized, empathetic teacher is, in fact, a very good teacher.

“What if we take your teaching up a level to a stronger focus on learning? Let’s look at the output that is causing you this worry and stress. Together, can we look at their work and identify what they, in your words, ‘just don’t, won’t, can’t’ do?’ And then, what if we establish mathematics goals to focus learning for you and your students?”

Sitting there on the bank of the Chattahoochee, occasionally interrupted, joyfully, by a toddler that needed to show us a valuable rock or other important discovery, we combed through student work. Outpouring concern and frustration, she talked about each learner, their strengths, and what surprised her about what they did not understand. I listened in awe of what she knew about her students in granular detail, and what she thought they knew but didn’t really. My notes highlighted every success she saw and the joy and pride she felt with every success.

How might we shift her work to increase the amount of success for her and her students? How might we empower learners to take action, self-assess, and ask questions early and often to improve their understanding and communication? What if we take what we just learned about her class and level it out to make her expectations and her thinking visible?

We found four categories or groupings:

1. As soon I as finish explaining the task, they are all over me, Jill. They have no idea what to do or are too scared to get started. They want me to hold their hand. They are not empowered or safe enough to try.” They are splashing around in the shallow end, maybe even thrashing.
2. They started, but cannot think flexibly when their first attempt gets them nowhere. They will not hear feedback or collaborate to think differently. They just shut down.
3. “They are happily working along and find success.” They are willing to work in the pool, but need support build around them to know this is a safe, brave space to draft and redraft to think and learn. Mistakes are opportunities to learn; they do not define you.
4. “They are first and fast and successful. They want and need more. I want to deepen and connect their learning, not broaden it.” They are willing to dive into the deep end confidently to explore new connections and representations.

This hard, important work helped us gain clarity about what is essential to learn in her classroom. Articulating frustration points as well as success points during her analysis of learning in her classroom revealed and organized a path for communication of learning intentions.

How might we empower and embolden our learners to ask the questions they need to ask by improving the ways we communicate and assess?

What if we make our thinking visible to our learners? What if we display learning progressions in our learning space to show a pathway for learners?

Great teachers lead us just far enough down a path so we can challenge for ourselves.  They provide just enough insight so we can work toward a solution that makes us, makes me want to jump up and shout out to the world, makes me want to step to the next higher level. Great teachers somehow make us want to ask the questions that they want us to answer, overcome the challenge that they, because they are our teacher, believe we need to overcome. (Lichtman, 20 pag.)

We want every learner in our care to be able to say

I can make sense of problems and persevere in solving them.  (CCSS.MATH.PRACTICE.MP1)

But, as a learner…What if I think I can’t? What if I’m stuck? What if I feel lost, confused, or discouraged? How might we offer a pathway for success? What if we provide cues to guide learners and inspire interrogative self-talk?

NCTM’s recent publication, Principles to Actions: Ensuring Mathematical Success for All, calls us to support productive struggle in learning mathematics. How do we encourage our students to keep struggling when they encounter a challenging task? They are accustomed to giving up when they can’t solve a problem immediately and quickly. How do we change the practice of how our students learn mathematics?

How might we coach our learners in to asking more questions? Not just any questions – targeted questions. What if we coach and develop the skill of questioning self-talk?

Interrogative self-talk, the researchers say, “may inspire thoughts about autonomous or intrinsically motivated reasons to pursue a goal.” As ample research has demonstrated, people are more likely to act, and to perform well, when the motivations come from intrinsic choices rather than from extrinsic pressures.  Declarative self-talk risks bypassing one’s motivations. Questioning self-talk elicits the reasons for doing something and reminds people that many of those reasons come from within.” (Pink, 103 pag.)

Our coffee is cold and our children have lost interest in playing together. As we wrap up our reflection, feedback, and planning session, we agree to experiment the next week with her students. How might the work and learning change if we make a pathway for self-assessment and self-talk visible to the learners?

We plan to post #LL2LU SMP-1:  I can make sense of problems and persevere in solving them in the classroom and on the tables for easy reference.  Our immediate learning goal for the students is to make sense and persevere, to ask clarifying questions and try again, to show thinking for clarity and questioning, and to find multiple ways to solutions and find connections.

Excellent teachers think hard about when they will present the learning intention. They don’t just set the learning intentions early in the lesson and then forget about them. They refer to these intentions throughout instruction, keeping students focused on what it is they’re supposed to learn. (Hattie, 55-56 pag.)

Hattie, John A. (Allan); Fisher, Douglas B.; Frey, Nancy; Gojak, Linda M.; Moore, Sara Delano; Mellman, William L.. Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning (Corwin Mathematics Series). SAGE Publications. Kindle Edition.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 21) Print.

Lichtman, Grant, and Sunzi. The Falconer: What We Wish We Had Learned in School. New York: IUniverse, 2008. Print.

Pink, Daniel H. (2012-12-31). To Sell Is Human: The Surprising Truth About Moving Others. Penguin Group US. Kindle Edition.

# Agenda: Embolden Your Inner Mathematician (09.19.18) Week 3

Week Three of Embolden Your Inner Mathematician

We commit to curation of best practices, connections between mathematical ideas, and communication to learn and share with a broad audience.

Course Goals:
At the end of the semester, teacher-learners should be able to say:

• I can work within NCTM’s Eight Mathematical Teaching Practices for strengthening the teaching and learning of mathematics.
• I can exercise mathematical flexibility to show what I know in more than one way.
• I can make sense of tasks and persevere in solving them.

Today’s Goals
At the end of this session, teacher-learners should be able to say:

• I can use and connect mathematical representations. (#NCTMP2A)
• I can show my work so a reader understand without asking me questions.

Use and connect mathematical representations:Effective teaching of mathematics engages students in making connections among mathematical representations to deepen understanding of mathematics concepts and procedures and as tools for problem solving.

Learning Progressions for today’s goals:

• I can use and connect mathematical representations.
• I can use and connectmathematical representations.
• I can show my work so that a reader understands without have to ask me questions.

What the research says:

High-level tasks not only hold high mathematical expectations for every student, one aspect of equitable classrooms, they also “allow multiple entry points and varied solution strategies” (NCTM 2014, p. 17).

…Positioning students as valuable contributors to mathematical work, even as authors and owners of mathematical ideas, supports the development of positive mathematical identities and agency as mathematical thinkers. [p. 72-73]

Too often students see mathematics as isolated facts and rules to be memorized. … students are expected to develop deep and connected knowledge of mathematics and are engaged in learning environments rich in use of multiple representations.

Mathematics learning is not a one size fits all approach …, meaning not every child is expected to engage in the mathematics in the same way at the same time. … the diversity of their sense-making approaches is reflected in the diversity of their representations. [p. 140]

Examples of Anticipated thinking and outcomes:

[Cross posted on Sum it up and Multiply it out]

Gough, Jill, and Jennifer Wilson. “#LL2LU Learning Progressions.” Experiments in Learning by Doing or Easing the Hurry Syndrome.WordPress, 04 Aug. 2014. Web. 11 Mar. 2017.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 21) Print.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.

Smith, Margaret, and Mary Kay Stein. 5 Practices for Orchestrating Productive Mathematics Discussions.The National Council of Teachers of Mathematics, 2018.

# Agenda: Embolden Your Inner Mathematician (09.12.18) Week 2

Week Two of Embolden Your Inner Mathematician

We commit to curation of best practices, connections between mathematical ideas, and communication to learn and share with a broad audience.

Course Goals:
At the end of the semester, teacher-learners should be able to say:

• I can work within NCTM’s Eight Mathematical Teaching Practices for strengthening the teaching and learning of mathematics.
• I can exercise mathematical flexibility to show what I know in more than one way.
• I can make sense of tasks and persevere in solving them.

Today’s Goals

At the end of this session, teacher-learners should be able to say:

• I can use and connect mathematical representations. (#NCTMP2A)
• I can show my work so that a reader understands without have to ask me questions.

Use and connect mathematical representations:Effective teaching of mathematics engages students in making connections among mathematical representations to deepen understanding of mathematics concepts and procedures and as tools for problem solving.

Learning Progressions for today’s goals:

• I can useand connect mathematical representations.
• I can use and connectmathematical representations.
• I can show my work so that a reader understands without have to ask me questions.

• Beanie Boos (see slide deck)
• Number Talks
• What do the standards say?

Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.

Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Fluently add and subtract multi-digit whole numbers using the standard algorithm.

Multiplication

Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 × 80, 5 × 60) using strategies based on place value and properties of operations.

Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Fluently multiply multi-digit whole numbers using the standard algorithm.

[Cross posted on Sum it up and Multiply it out]

Gough, Jill, and Jennifer Wilson. “#LL2LU Learning Progressions.” Experiments in Learning by Doingor Easing the Hurry Syndrome.WordPress, 04 Aug. 2014. Web. 11 Mar. 2017.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 21) Print.

“Number & Operations in Base Ten.” Number & Operations in Base Ten | Common Core State Standards Initiative, National Governors Association Center for Best Practices and Council of Chief State School Officers.

# I can elicit and use evidence of student thinking #NCTMP2A #LL2LU

We strive to grow in our understanding of the Eight Mathematics Teaching Practices from NCTM’s Principles to Actions: Ensuring Mathematical Success for All. This research-informed framework of teaching and learning reflects a core set of high leverage practices and essential teaching skills necessary to promote deep learning of mathematics.

Elicit and use evidence of student thinking.

Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical understanding and to adjust instruction continually in ways that support and extend learning.

In order to support our teaching teams as they stretch to learn more, we drafted the following learning progressions. We choose to provide a couple of pathways to focus teacher effort, understanding, and action.

When working with teacher teams to elicit and use evidence of student thinking, we refer to 5 Practices for Orchestrating Productive Mathematics Discussions by Peg Smith and Mary Kay Stein and Dylan Wiliam’s Embedding Formative Assessment: Practical Techniques for K-12 Classrooms along with Principles to Actions: Ensuring Mathematical Success for All by Steve Leinwand.

To deepen our understanding around eliciting evidence of student thinking, we anticipate multiple ways learners might approach a task, empower learners to make their thinking visible, celebrate mistakes as opportunities to learn, and ask for more than one voice to contribute.

From  NCTM’s 5 Practices for Orchestrating Productive Mathematics Discussions, we know that we should do the math ourselves, anticipate what learners will produce, and brainstorm how we might select, sequence, and connect learners’ ideas.

How will classroom culture grow as we focus on the five key strategies we studied in Embedding Formative Assessment: Practical Techniques for F-12 Classrooms by Dylan Wiliam and Siobhan Leahy?

• Clarify, share, and understand learning intentions and success criteria
• Engineer effective discussions, tasks, and activities that elicit evidence of learning
• Provide feedback that moves learning forward
• Activate students as learning resources for one another
• Activate students as owners of their own learning

We call questions that are designed to be part of an instructional sequence hinge questions because the lessons hinge on this point. If the check for understanding shows that all students have understood the concept, you can move on. If it reveals little understanding, the teacher might review the concept with the whole class; if there are a variety of responses, you can use the diversity in the class to get students to compare their answers. The important point is that you do not know what to do until the evidence of the students’ achievement is elicited and interpreted; in other words, the lesson hinges on this point. (Wiliam, 88 pag.)

To strengthen our understanding of using evidence of student thinking, we plan our hinge questions in advance, predict how we might sequence and connect, adjust instruction based on what we learn – in the moment and in the next team meeting – to advance learning for every student. We share data within our team to plan how we might differentiate to meet the needs of all learners.

How might we team to strengthen and deepen our commitment to ensuring mathematical success for all?

What if we anticipate, monitor, select, sequence, and connect student thinking?

How might we elicit and use evidence of student thinking to advance learning for every learner?

Cross posted on Easing the Hurry Syndrome

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 21) Print.

Stein, Mary Kay., and Margaret Smith. 5 Practices for Orchestrating Productive Mathematics Discussions. N.p.: n.p., n.d. Print.

Wiliam, Dylan; Leahy, Siobhan. Embedding Formative Assessment: Practical Techniques for F-12 Classrooms. (Kindle Locations 2191-2195). Learning Sciences International. Kindle Edition.