Category Archives: Learning Progressions

Anticipating @IllustrateMath’s 6.RP Overlapping Squares

To anchor our work in differentiation and mathematical flexibility, we use NCTM’s 5 Practices for Orchestrating Productive Mathematics Discussions by Margaret Smith and Mary Kay Stein.

Kristi Story, Becky Holden, and I worked together during our professional learning time to meet the goals for the session shown below.

From  NCTM’s 5 Practices, we know that we should do the math ourselves, predict (anticipate) what students will produce, and brainstorm what will help students most when in productive struggle and when in destructive struggle.

The learning goals for students include:

I can use ratio reasoning to solve problems and understand ratio concepts.

I can make sense of tasks and persevere in solving them.

I can look for and make use of structure.

I can notice and note to make my thinking visible.

Kristi selected Illustrative Math’s  6.RP Overlapping Squares task for students. Here are the ways we anticipated how students would approach and engage with the task.

This slideshow requires JavaScript.

Our plan for helping students who are stuck includes providing and encouraging the use of a graphing tool such as graph paper or TI-Nspire software installed on their MacBooks. We also intend to use the following learning progressions.

I can make sense of tasks and persevere in solving them.

I can look for and make use of structure.

Finally, we also want our learners to work on how they show their work.

#ShowYourWork Subtraction

When mathematics classrooms focus on numbers, status differences between students often emerge, to the detriment of classroom culture and learning, with some students stating that work is “easy” or “hard” or announcing they have “finished” after racing through a worksheet. But when the same content is taught visually, it is our experience that the status differences that so often beleaguer mathematics classrooms, disappear.  – Jo Boaler


Boaler, Jo, Lang Chen, Cathy Williams, and Montserrat Cordero. “Seeing as Understanding: The Importance of Visual Mathematics for Our Brain and Learning.” Journal of Applied & Computational Mathematics 05.05 (2016): n. pag. Youcubed. Standford University, 12 May. 2016. Web. 18 Mar. 2017.

Stein, Mary Kay., and Margaret Smith. 5 Practices for Orchestrating Productive Mathematics Discussions. N.p.: n.p., n.d. Print.

Goal Work: design and implement a differentiated action plan

As an Academic Leadership Team, Maryellen BerryRhonda MitchellMarsha Harris, and I continue to work on our common goal.

By the end of this year, all teachers should be able to say We can design and implement a differentiated action plan across our grade to meet all learners where they are.

To highlight our commitment to empowering learners to act as agents of their own learning, we continue to share the following progression as a pathway for teams to learn and stretch.

You can see our previous plans here and here. For today’s Wednesday Workshop, we only had about 45 minutes to work and learn together.  As the Academic Leadership Team, we asked ourselves how we might make time for faculty to learn in targeted ways?  We challenged ourselves to model what we want to see from our faculty. So today’s goal is

We can design and implement a differentiated action plan across our divisions to meet all teacher-learners where they are.

Here is the big picture for our plan.Here are the details from the Pre-K – 6th literacy PD:

Here are the details for Early Leaners PD: Here are the details for Math PD:

Teachers of Specials and Learning Team also had different learning plans to differentiate for our readers and the social-emotional and character building work.

We hope our faculty can see that we strive to serve as their teacher team and that we embrace the norm be together, not the same.

We can design and implement a differentiated action plan across our grade to meet all learners where they are.

We can design and implement a differentiated action plan across our divisions to meet all learners where they are.

Read, apply, learn

Read, apply, learn
`2017 T³™ International Conference
Saturday, March 11, 8:30 – 10 a.m.
Columbus H, East Tower, Ballroom Level
Jennifer Wilson
Jill Gough

How might we take action on current best practices and research in learning and assessment? What if we make sense of new ideas and learn how to apply them in our own practice? Let’s learn together; deepen our understanding of formative assessment; make our thinking visible; push ourselves to be more flexible; and more. We will explore some of the actions taken while tinkering with ideas from Tim Kanold, Dylan Wiliam, Jo Boaler and others, and we will discuss and share their impact on learning.

[Cross posted at Easing The Hurry Syndrome]

Deep practice: building conceptual understanding in the middle grades

Deep practice:
building conceptual understanding in the middle grades
2017 T³™ International Conference
Friday, March 10, 10:00 – 11:30 a.m.
Dusable, West Tower, Third Floor
Jill Gough
Jennifer Wilson

How might we attend to comprehension, accuracy, flexibility and then efficiency? What if we leverage technology to enhance our learners’ visual literacy and make connections between words, pictures and numbers? We will look at new ways of using technology to help learners visualize, think about, connect and discuss mathematics. Let’s explore how we might help young learners productively struggle instead of thrashing around blindly.

[Cross posted at Easing The Hurry Syndrome]

PD planning: #Mathematizing Read Alouds

How might we deepen our understanding of numeracy using children’s literature? What if we mathematize our read aloud books to use them in math as well as reading and writing workshop?

Have you read Love Monster and the last Chocolate from Rachel Bright?

Becky Holden and I planned the following professional learning session to build common understanding and language as we expand our knowledge of teaching numeracy through literature.  Each Early Learners, Pre-K, and Kindergarten math teacher participated in 2.5-hours of professional learning over the course of the day.

screen-shot-2017-02-10-at-5-12-49-pm

To set the purpose and intentions for our work together we shared the following:

screen-shot-2017-01-15-at-8-35-21-am screen-shot-2017-01-15-at-8-35-31-am

Becky’s lesson plan for Love Monster and the last Chocolate is shown below:

lovemonsterlessonplan

After reading the story, we asked teacher-learners what they wondered and what they wanted to know more about.  After settling on a wondering, we asked our teacher-learners to use pages from the book to anticipate how their young learners might answer their questions.

After participating in a gallery walk to see each other’s methods, strategies, and representations, we summarized the ways children might tackle this task. We decided we were looking for

  • counts each one
  • counts to tell how many
  • counts out a particular quantity
  • keeps track of an unorganized pile
  • one-to-one correspondence
  • subitizing
  • comparing

When we are intentional about anticipating how learners may answer, we are more prepared to ask advancing and assessing questions as well as pushing and probing questions to deepen a child’s understanding.

If a ship without a rudder is, by definition, rudderless, then formative assessment without a learning progression often becomes plan-less. (Popham,  Kindle Locations 355-356)

Here’s the Kindergarten learning progression for I can compare groups to 10.

Level 4:
I can compare two numbers between 1 and 10 presented as written numerals.

Level 3:
I can identify whether the number of objects (1-10) in one group is greater than, less than, or equal to the number of objects in another group by using matching and counting strategies.

Level 2:
I can use matching strategies to make an equivalent set.

Level 1:
I can visually compare and use the use the comparing words greater than/less than, more than/fewer than, or equal to (or the same as).

Here’s the Pre-K  learning progression for I can keep track of an unorganized pile.

Level 4:
I can keep track of more than 12 objects.

Level 3:
I can easily keep track of objects I’m counting up to 12.

Level 2:
I can easily keep track of objects I’m counting up to 8.

Level 1:
I can begin to keep track of objects in a pile but may need to recount.

How might we team to increase our own understanding, flexibility, visualization, and assessment skills?

Teachers were then asked to move into vertical teams to mathematize one of the following books by reading, wondering, planning, anticipating, and connecting to their learning progressions and trajectories.

During the final part of our time together, they returned to their base-classroom teams to share their books and plans.

After the session, I received this note:

Hi Jill – I /we really loved today. Would you want to come and read the Chocolate Monster book to our kids and then we could all do the math activities we did as teachers? We have math most days at 11:00, but we could really do it when you have time. We usually read the actual book, but I loved today having the book read from the Kindle (and you had awesome expression!).

Thanks again for today – LOVED it.

How might we continue to plan PD that is purposeful, actionable, and implementable?


Cross posted on Connecting Understanding.


Hattie, John A. (Allan); Fisher, Douglas B.; Frey, Nancy; Gojak, Linda M.; Moore, Sara Delano; Mellman, William L. (2016-09-16). Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning (Corwin Mathematics Series). SAGE Publications. Kindle Edition.

Norris, Kit; Schuhl, Sarah (2016-02-16). Engage in the Mathematical Practices: Strategies to Build Numeracy and Literacy With K-5 Learners (Kindle Locations 4113-4115). Solution Tree Press. Kindle Edition.

Popham, W. James. Transformative Assessment in Action: An Inside Look at Applying the Process (Kindle Locations 355-356). Association for Supervision & Curriculum Development. Kindle Edition.

Learner choice: using appropriate tools strategically takes time and tools

All students benefit from using tools and learning how to use them for a variety of purposes.  If we don’t make tools readily available and value their use, our students miss out on major learning opportunities. (Flynn, 106 pag.)

I’m taking the #MtHolyokeMath #MTBoS course, Effective Practices for Advancing the Teaching and Learning of Mathematics.  Zachary Champagne facilitated the second session and used The Cycling Shop task from Mike Flynn‘s TMC article.

screen-shot-2017-02-03-at-2-50-42-pm

You can see the notes I started on paper.

mtholyokemath-2-zakchamp

Jim, Casey and I used a pre-made Google slide deck provided to us to collaborate since we were located in GA, MA, and CA.  We challenged ourselves to consider wheels after working with 8 wheels.

Here’s what our first table looked like.

cyclingshop1

Now, I was having trouble keeping up with the number of wheels and the number of cycles.  So I did this:

screen-shot-2017-02-03-at-3-08-56-pm

This made it both better and worse for me (and for my group).

Here’s an interesting thing.  I’ve been studying, practicing, and teaching the Standards for Mathematical Practices. Jennifer Wilson and I have written a learning progression to help learners learn to say I can use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. (Sage, 6 pag.)

Clearly, I was not even at Level 1 during class.  Not once – not once – during class did it occur to me how much a spreadsheet would help me, strategically.

8wheelsspreadsheet

The spreadsheet would calculate the number of wheels automatically for each row so that I could confirm correct combinations.  (You can view this spreadsheet and make a copy to play with if you are interested.)

When making mathematical models, [mathematically proficient students] know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. (Sage, 6 pag.)

With a quick copy and paste, I could tackle any number of wheels using my spreadsheet.  I can look for and make use of structure emerged quickly when using the spreadsheet strategically.  (I want to also highlight color as a strategic tool.) Play with it; you’ll see.

9_wheelsspreadsheet

[Mathematically proficient students] are able to use technological tools to explore and deepen their understanding of concepts. (Sage, 6 pag.)

screen-shot-2017-02-03-at-4-03-03-pm

There is no possible way I would have the stamina to seek all the combinations for 25 or 35 wheels by hand, right?

Students have access to a wide assortment of tools that they must learn to use for their mathematical work. The sheer volume of possibilities can seem overwhelming, but with time and experience, students can learn how to choose the right tool for the task at hand and how to use it strategically to reach their goal. (Flynn, 106 pag.)

Important to repeat, “with time and experience, students can learn how to choose the right tool for the task at hand and how to use it strategically to reach their goal.

For this to happen, we need to have a solid understanding of the kinds of tools available, the purpose of each tool, and how students can learn to use them flexibly and strategically in any given situation. This also means that we have to make these tools readily available to students, encourage their use, and provide them with options so they can decide which tool to use and how to use it. If we make all the decisions for them, we remove that critical component of MP5 where students make decisions based on their knowledge and understanding of the tools and the task at hand. (Flynn, 106 pag.)

To be clear, a spreadsheet was available to me during class, but I didn’t see it.  How might we make tools readily available and visible for learners to choose?

When we commit to empower students to deepen their understanding, we make tools available and encourage exploration and use, so that each learner makes decisions for themselves. In other words, how do we help learners to level up in both content and practice?

What if we make I can look for and make use of structure; I can use appropriate tools strategically; and I can make sense of tasks and persevere in solving them essential to learn for every learner?

How might we offer tools and time?

It’s about learning by doing, right?


Flynn, Michael. Beyond Answers: Exploring Mathematical Practices with Young Children. Portland, Maine.: Stenhouse, 2017. Print.

Flynn, Mike. “The Cycling Shop.” Nctm.org. Teaching Children Mathematics, Aug. 2016. Web. 03 Feb. 2017.

Common Core State Standards.” The SAGE Encyclopedia of Contemporary Early Childhood Education (n.d.): n. pag. Web.

Teaming: Deepen Understanding to Strengthen Academic Foundation part 2

How might we learn and grow together? How do we connect ideas and engage in productive, purposeful  learning experiences (aka professional development) around common mission, vision, and goals? What if we model what we want to see and experience in our classrooms?

Continuing to work on our common goal, Maryellen BerryRhonda MitchellMarsha Harris, and I facilitated a half day learning session for base classroom teachers.

In August, we introduced our goal for teacher-learners and began our work and learning with the faculty.
screen-shot-2017-03-04-at-7-52-14-am

Throughout the semester, we have been working with teacher-teams in many ways. We hope our faculty notice how we are modeling be together, not the same  taught during Pre-Planning. We have worked and learned with teams to design and implement common assessments and analyze the results to understand what students know in reading, writing, and mathematics.

screen-shot-2017-03-04-at-7-52-02-am

Based on our observations and conferring with teams and individual teachers, we know that we are ready to move to the next level of our work.  Here is a copy of our plan:

Goal:

We can design and implement a differentiated action plan across our grade to meet all learners where they are.

9:00 Intro to Purpose:  Instructional Core: Relationship between content, teacher, student

  • Brightspot observed Instructional Core teamwork
9:30 Movement to Grade Level Teams and spaces
9:35

15 min

40 min

45 min

Analyze Student Work Together (a la Norming Meeting)

  • Use PAST assessment (Pre-K), Founts & Pinnell winter running records (K-6th) as common assessment.
  • Sort student records (1-4) using TCRWP Benchmark Reading Levels and Marking Periods and identify at least one teaching point for each learner (on a Post-it on the folder)
  • Partner up to do a deep dive into one of the levels
  • Using the Continuum of Literacy, note and note the following
  • Develop a plan for this level of reading and the necessary strategy groups
11:25 Q&A and transition
11:30 Closure: Planning, Reflection, Next Steps

Here’s what it looked like:

This slideshow requires JavaScript.

As we learn more about our learners, we are better equipped to help them as they learn and grow.

Based on outcomes from today, Maryellen, Marsha, Rhonda, and I will adjust our pacing guide and plans to find more time for teachers to do this important learning.

We can design and implement a differentiated action plan across our grade divisions to meet all learners where they are.