Category Archives: Reflection

Reader’s Response: Learning to use learning progressions (reflections from 5th grade learners)

What if we design a lesson to orchestrate productive discussion, critique the reasoning of others, grow as readers and writers, and deepen understanding through reflection? How might we engineer effective discussions, tasks, and activities that elicit evidence of learning as we learn to provide feedback that moves learning forward.  Will this help activate students as learning resources for one another?

The 5th grade team invited me to co-labor with them to help our young learners deepen their understanding of reader’s response journals.  Using their readers response learning progressions, our 5th graders offered me feedback to help me grow as a reader-writer and to practice critiquing the reasoning of others.

Knowing how important it is to close the lesson with purpose, we asked our young learners to reflect using the following prompts.

Here are a few samples from their reflections.

  • I learned to pay attention to making sure I explain the book.  I learned to ask myself if I added quotes and page numbers.  An “ah ha” for me was when I learned about the importance of adding page numbers and quotes.
  • I learned to pay attention to the page numbers and the definitions of words. I learned to ask myself where are the mistakes in this and how can I make it better? An “ah ha” for me is to look up definitions of words I don’t understand.
  • I learned to pay attention to focusing a lot on text evidence. I learned to ask myself if I really did my best and met the level 3 requirements. An “ah ha” for me is to be able to link my writing and the book together.
  • I learned to pay attention to specific details and listening closely. I learned to ask myself questions about the text. An “ah ha” for me is critique versus criticism and constructive criticism.
  • I learned to pay attention to feedback I receive, because it will make my writing better.  I learned to ask myself about text evidence, making thinking visible, and formatting.  An “ah ha” for me is including text information in my writing at all times.

How will classroom culture grow as we strive to focus on the five key strategies we studied in Embedding Formative Assessment: Practical Techniques for F-12 Classrooms by Dylan Wiliam and Siobhan Leahy?

  • Clarify, share, and understand learning intentions and success criteria
  • Engineer effective discussions, tasks, and activities that elicit evidence of learning
  • Provide feedback that moves learning forward
  • Activate students as learning resources for one another
  • Activate students as owners of their own learning

Wiliam, Dylan; Leahy, Siobhan. Embedding Formative Assessment: Practical Techniques for F-12 Classrooms. (Kindle Locations 493-494). Learning Sciences International. Kindle Edition.

Reader’s Response: Learning to use learning progressions (my reflection)

What if we design a lesson to orchestrate productive discussion, critique the reasoning of others, grow as readers and writers, and deepen understanding through reflection?

The 5th grade team invited me to co-labor with them to help our young learners deepen their understanding of reader’s response journals. As a team, they are focused on implementing and deepening their understanding of these five strategies from Wilam and Leahy:

  • Clarify, share, and understand learning intentions and success criteria
  • Engineer effective discussions, tasks, and activities that elicit evidence of learning
  • Provide feedback that moves learning forward
  • Activate students as learning resources for one another
  • Activate students as owners of their own learning

Can we engineer learning experiences that orchestrate effective discussion and elicit evidence of learning? Can we empower our young learners to serve as learning resources for one another and deepen their own learning?

The plan called for crisp, quick moments to think, write, and talk. Using the learning intentions below, our young learners read a reader’s response entry from me and offered me critique.

First, they read my entry silently and analyzed it using the given success criteria.  Next, with a partner, they discussed what they read, what they thought, and if they agreed on their ratings? Then, we began to develop critique using the starters shown below.

After thinking and writing silently, partners shared their sentences. Then, they chose one sentence each to share aloud in the group. I heard important, informative feedback for every voice in the room.  Here are a few samples from their feedback.

  • I like how you included the definitions from the dictionary; I did not know what cur was. I wonder if it would be easier to understand if you told us what was going on and went in chronological order. What if you add a few more details to explain your thinking?
  • I like how you were descriptive, because it helped me understand a bit more. I wonder if you thought we had all read the book.  What if you include the title next time?
  • I like how you added the page numbers in our writing, because you really told us how/what page number it was so if we found the book and wanted to read a part, then we could just find the page really easily. I wonder what the title of the book is because it sounded interesting.  What if the title of the book was on the page, because it would really give us a quick summary of what the book was.
  • I like that you included a sketch, because it helped me think about the names Bud was called.  I wonder what Rule 118 is. What if you explain the connection to the text and your thinking?

Engineer effective discussions, tasks, and activities that elicit evidence of learning as we learn to provide feedback that moves learning forward.  Will this help activate students as learning resources for one another?


Wiliam, Dylan; Leahy, Siobhan. Embedding Formative Assessment: Practical Techniques for F-12 Classrooms. (Kindle Locations 493-494). Learning Sciences International. Kindle Edition.

Embolden Your Inner Mathematician Week 2: Contemplate then Calculate (#CthenC)

For our second session of Embolden Your Inner Mathematician, we focus on Numeracy and Visual Learning: Elicit and use evidence of student thinking.

What is we use powerful tools to elicit student thinking? How might we learn about students to deeply understand them as mathematicians? And then, what actions do we take to ensure mathematical success for all?

This week’s session began with a gallery walk using Amy Lucenta and Grace Kelemanik’s first five Contemplate then Calculate (#CthenC) lessons found on at Fostering Math Practices.

From Ruth Parker and Cathy Humphreys in Making Number Talks Matter:

No matter what grade you teach, even high school, so-called “dot” cards (which may not have dots) are a great way to start your students on the path to mathematical reasoning. We say this because, from experience, we have realized that with dot cards, students only need to describe what they see— and people have many different ways of seeing! Arithmetic problems, on the other hand, tend to be emotionally loaded for many students. Both of us have found that doing several dot talks before we introduce Number Talks (with numbers) helps establish the following norms:

  • There are many ways to see, or do, any problem.

  • Everyone is responsible for communicating his or her thinking clearly so that others can understand.

  • Everyone is responsible for trying to understand other people’s thinking.

To embolden mathematicians and to prepare to elicit and use evidence of student thinking, teaching teams must practice to develop the habits put forth in 5 Practices for Orchestrating Productive Mathematics Discussions.

You can see our teacher-learner-leaders working to deepen their understanding of and commitment to the Making Number Talks Matter: norms, Smith and Stein’s 5 Practices for Orchestrating Productive Mathematics Discussions, and NCTM’s Principles to Actions: Ensuring Mathematical Success for All.

How might we continue to deepen our understanding of NCTM’s teaching practices? What if we team to learn and practice?

From Principles to Actions: Ensuring Mathematical Success for All

Elicit and use evidence of student thinking.
Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical understanding and to adjust instruction continually in ways that support and extend learning.

And, from Taking Action: Implementing Effective Mathematics Teaching Practices in K-Grade 5

In ambitious teaching, the teacher engages students in challenging tasks and collaborative inquiry, and then observes and listens as students work so that she or he can provide an appropriate level of support to diverse learners.  The goal is to ensure that each and every student succeeds in doing meaningful, high-quality work, not simply executing procedures with speed and accuracy. (Smith, 4 pag.)

Worth repeating:

The goal is to ensure that each and every student succeeds in doing meaningful, high-quality work, not simply executing procedures with speed and accuracy.

We continue to foster creativity, visual and algebraic representation to strengthen our mathematical flexibility as we learn together.

When mathematics classrooms focus on numbers, status differences between students often emerge, to the detriment of classroom culture and learning, with some students stating that work is “easy” or “hard” or announcing they have “finished” after racing through a worksheet. But when the same content is taught visually, it is our experience that the status differences that so often beleaguer mathematics classrooms, disappear.  – Jo Boaler

#ChangeTheFuture

#EmbraceAmbitiousTeaching

#EmboldenYourInnerMathematician


Seeing as Understanding: The Importance of Visual Mathematics for Our Brain and Learning.” Journal of Applied & Computational Mathematics 05.05 (2016): n. pag. Youcubed. Standford University, 12 May. 2016. Web. 18 Mar. 2017.

Humphreys, Cathy; Parker, Ruth. Making Number Talks Matter (Kindle Locations 339-346). Stenhouse Publishers. Kindle Edition.

Kelemanik, Grace, and Amy Lucent. “Starting the Year with Contemplate Then Calculate.” Fostering Math Practices.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.

Embolden Your Inner Mathematician Week 1: Number Talks

How might we deepen our understanding of NCTM’s teaching practices? What if we team to learn and practice?

For our first session of Embolden Your Inner Mathematician, we focus on Subitizing and Number Talks: Elicit and use evidence of student thinking.

From Principles to Actions: Ensuring Mathematical Success for All

Elicit and use evidence of student thinking.
Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical understanding and to adjust instruction continually in ways that support and extend learning.

And, from Taking Action: Implementing Effective Mathematics Teaching Practices in K-Grade 5

Meeting the demands of world-class standards for student learning requires teachers to engage in what as been referred to as “ambitious teaching.” Ambitious teaching stands in sharp contrast to what many teachers experienced themselves as learners of mathematics. (Smith, 3 pag.)

In ambitious teaching, the teacher engages students in challenging tasks and collaborative inquiry, and then observes and listens as students work so that she or he can provide an appropriate level of support to diverse learners.  The goal is to ensure that each and every student succeeds in doing meaningful, high-quality work, not simply executing procedures with speed and accuracy. (Smith, 4 pag.)

Worth repeating:

The goal is to ensure that each and every student succeeds in doing meaningful, high-quality work, not simply executing procedures with speed and accuracy.

How might we foster curiosity, creativity, and critical reasoning while deepening understanding? What if we listen to what our students notice and wonder?

My daughter (7th grade) and I were walking through our local Walgreens when I hear her say “Wow, I wonder…” I doubled back to take this photo.

To see how we used this image in our session to subitize (in chunks) and to investigate the questions that arose from our wonderings, look through our slide deck for this session.

From  NCTM’s 5 Practices, we know that we should do the math ourselves, predict (anticipate) what students will produce, and brainstorm what will help students most when in productive struggle and when in destructive struggle. What if we build the habit of showing what we know more than one way to add layers of depth to understanding?

When mathematics classrooms focus on numbers, status differences between students often emerge, to the detriment of classroom culture and learning, with some students stating that work is “easy” or “hard” or announcing they have “finished” after racing through a worksheet. But when the same content is taught visually, it is our experience that the status differences that so often beleaguer mathematics classrooms, disappear.  – Jo Boaler

What if we ask ourselves what other ways can we add layers of depth so that students make sense of this task? How might we better serve our learners if we elicit and use evidence of student thinking to make next instructional decisions? 

#ChangeTheFuture

#EmbraceAmbitiousTeaching

#EmboldenYourInnerMathematician


Boaler, Jo, Lang Chen, Cathy Williams, and Montserrat Cordero. “Seeing as Understanding: The Importance of Visual Mathematics for Our Brain and Learning.” Journal of Applied & Computational Mathematics 05.05 (2016): n. pag. Youcubed. Standford University, 12 May. 2016. Web. 18 Mar. 2017.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.

The Science of Early Learning and Adversity: Daily Leadership to Promote Development and Buffer Stress Day 1

Rhonda Mitchell (@rgmteach) and I are attending The Science of Early Learning and Adversity: Daily Leadership to Promote Development and Buffer Stress at The Saul Zaentz Professional Learning Academy. This professional development features keynote speaker Walter Gilliam (@WalterGilliam).

How can early education leaders support the design and implementation of strong early learning environments—those that buffer stress, reduce challenging behaviors, and promote development?

Agenda (with my notes)

Today’s Early Education Landscape
with Nonie Lesaux and Stephanie Jones

Understanding Stress and Behavior
in the Early Education Environment
with Walter Gilliam
Director of The Edward Zigler Center in Child Development and Social Policy and Associate Professor of Child Psychiatry and Psychology, Yale University Child Study Center

Reflection and Application
with Walter Gilliam and the Zaentz Team
facilitated by Robin Kane

Strategic Planning Session
facilitated by Robin Kane and Emily Bautista

My list to think about, reflect on, and grapple with  from today includes:

  • Micro-stresses pile up.
  • How might we pay attention to and recognize stress?
    (Student stress, teacher stress, family stress, leadership stress.)
  • Empathy: Who is it given to? From whom is it withheld?
  • What are we looking for and who are we looking at?
  • How might we anticipate expected “unexpected” events?
  • What structures can be put in place to support learners, teachers, families, leaders?
  • When sharing information about a learner, check intent. Are we sharing knowledge and understanding to support the learner?
    • Can we offer evidence to show what we know and understand?
    • Can we share information without adding judgement and labels?
  • How do I and who helps me check my bias?

#LessonClose with @TracyZager at #MtHolyokeMath

I’m taking X.MTHED-404: Effective Practices for Advancing the Teaching and Learning of Mathematics (K-12).

Here are my notes from Session 8, Lesson Close with Tracy Zager.

Tracy’s session connects, for me, to a practitioner’s corner in David Sousa’s How the Brain Learns.  He writes

Closure describes the covert process whereby the learner’s working memory summarizes for itself its perception of what has been learned.  It is during closure that a student often completes the rehearsal process and attaches sense and meaning to the new learning, thereby increasing the probability that it will be retained in long-term storage. (p. 69)

How might we take up Tracy’s challenge to “never skip the close?” What new habits must we gain in order to make sure the close is useful to the learner?

Sousa continues

Closure is different from review. In review, the teacher does most of the work, repeating key concepts made during the lesson and rechecking student understanding.  In closure, the student does most of the work by mentally rehearsing and summarizing those concepts and deciding whether they make sense and have meaning. (p. 69)

What new habits must we gain in order to make sure the close is helps them reflect on learning, make connections, and/or ask new questions? In other words, do we plan intention time for learners to make sense of the task?

Closure is an investment than can pay off dramatically in increased retention of learning. (Sousa, p. 69)


Sousa, David A. How the Brain Learns. Thousand Oaks, CA: Corwin, a Sage, 2006. Print.

#NCSM17 #Sketchnotes Wednesday Summary

I’m attending the  National Council of Supervisors of Mathematics  2017 conference in San Antonio.  Here are my notes from Wednesday along with the session descriptions from the presenters.

Conferring with Young Mathematicians at Work:
The Process of Teacher Change
Cathy Fosnot

If children are to engage in problem solving with tenacity and confidence, good questioning on the part of teachers during conferrals is critical. Questioning must engender learner excitement and ownership of ideas, while simultaneously be challenging enough to support further development. Video of conferrals in action will be used for analysis, and a Landscape of Learning on the process of teacher change is shared as a lens for coaching.

Leading to Support Procedural Fluency for All Students
Jennifer Bay-Williams

Principles to Actions describes effective teaching practices that best support student learning. In this session we will focus on one of those teaching practices: “build procedural fluency from conceptual understanding.” Ensuring that every child develops procedural fluency requires understanding what fluency means, knowing research related to developing procedural fluency and conceptual understanding, and being able to translate these ideas into effective classroom practices. That is the focus of this session! We will take a look at research, connections to K–12 classroom practice, and implications for us as coaches and teacher leaders.

How to Think Brilliantly and Creatively in Mathematics: Some Guiding Thoughts for Teachers, Coaches, Students—Everyone!
James Tanton

This lecture is a guide for thinking brilliantly and creatively in mathematics designed for K–12 educators and supervisors, students, and all those seeking joyful mathematics doing. How do we model and practice uncluttered thinking and joyous doing in the classroom, pursue deep understanding over rote practice and memorization, and promote the art of successful ailing? Our complex society demands of its next generation not only mastery of quantitative skills, but also the confidence to ask new questions, explore, wonder, fail, persevere, succeed in solving problems and to innovate. Let’s not only send humans to Mars, let’s also foster in our next generation the might to get those humans back if something goes wrong! In this talk, I will explore five natural principles of mathematical thinking. We will all have fun seeing how school mathematics content is a vehicle for masterful ingenuity and joy.

Deep Practice:
Building Conceptual Understanding in the Middle Grades
Jill Gough, Jennifer Wilson

How might we attend to comprehension, accuracy, flexibility, and then efficiency? What if we leverage technology to enhance our learners’ visual literacy and make connections between words, pictures, and numbers? We will look at new ways of using technology to help learners visualize, think about, connect and discuss mathematics. Let’s explore how we might help young learners productively struggle instead of thrashing around blindly.

When Steve Leinwand asked if I was going to sketch our talk, I jokingly said that I needed someone to do it for me. We are honored to have this gift from Sharon Benson. You can see additional details on my previous post.