Category Archives: Professional Development Plans

Traverse session: Experiential and Instructional: Promoting Productive Mathematical Struggle #tvrse18

At Traverse Boulder, I facilitated the following session on Tuesday, June 5, 2018.

Experiential and Instructional:
Promoting Productive Mathematical Struggle

How might we implement tasks that promote reasoning and problem solving to deepen conceptual understanding? Let’s identify and implement high quality tasks grounded in real experiences. Advancing the teaching and learning of mathematics cannot be accomplished with decontextualized worksheets. Discuss, sketch, and solve tasks that promote flexibility, creative and critical reasoning, and problem solving. Learning math should be anchored in depth of understanding through context – not pseudo context – and built on conceptual understanding as well as procedural fluency.

Here’s my sketch note of our plan:

Here’s the slide deck:

Just say no to worksheets.

Say YES to productive struggle and grappling.

Embolden your inner storyteller and leverage the art of questioning.

Context is key.

#NCTMLive #T3Learns Webinar: Implement tasks that promote reasoning and problem solving, and Use and connect mathematical representations

On Wednesday, May 2, 2018, Jennifer Wilson (@jwilson828) and I co-facilitated the second webinar in a four-part series on the Eight Mathematics Teaching Practices from NCTM’s Principles to Actions: Ensuring Mathematical Success for All.

Implement tasks that promote reasoning and problem solving,
and Use and connect mathematical representations.

Effective teaching of mathematics facilitates discourse among learners to build shared understanding of mathematical ideas by analyzing and comparing approaches and arguments.

  • How might we implement and facilitate tasks that promote productive discussions to strengthen the teaching and learning of mathematics in all our teaching settings – teaching students and teaching teachers?
  • What types of tasks encourage mathematical flexibility to show what we know in more than one way?

Our slide deck:

Our agenda:

7:00 Jill/Jennifer’s Opening remarks

  • Share your name and grade level(s) or course(s).
  • Norm setting and Purpose
7:05 Number Talk: 81 x 25

  • Your natural way and Illustrate
  • Decompose into two or more addends (show it)
  • Show your work so a reader understands without asking questions
  • Share work via Twitter using #NCTMLive or bit.ly/nctmlive52
7:10 #LL2LU Use and connect mathematical representations

  • Self-assess where you are
  • Self-assessment effect size

Think back to a lesson you taught or observed in the past month. At what level did you or the teacher show evidence of using mathematical representations?

7:15 Task:  (x+1)^2 does/doesn’t equal x^2+1
7:25 Taking Action (DEI quote)
7:30 #LL2LU Implement Tasks That Promote Reasoning and Problem Solving
7:35 Graham Fletcher’s Open Middle Finding Equivalent Ratios
7:45 Illustrative Mathematics: Jim and Jesse’s Money
7:55 Close and preview next in the series

Some reflections from the chat window:

I learned to pay attention to multiple representations that my students will create when they are allowed the chance to think on their own.  I learned to ask myself how am I fostering this environment with my questioning.

I learned to pay attention to the diversity of representations that different students bring to the classroom and to wait to everyone have time to think

I learned to pay attention (more) to illustrating work instead of focusing so much on algebraic reasoning in my approach to teaching Algebra I. I learned to ask myself how could I model multiple representations to my students.

I learned to pay attention to multiple representations because students all think and see things differently.

I learned to make sure to give a pause for students to make the connections between different ways of representing a problem, rather than just accepting the first right answer and moving on.  

I learned to pay attention to the ways that I present information and concepts to children… I need to include more visual representations when I working with algebraic reasoning activities.

Cross posted on Easing the Hurry Syndrome

Leading Learners To Level Up: Deepening Understanding of Mathematical Practices #LL2LU with @jgough @jwilson828 #NCTMAnnual

At the National Council of Teachers of Mathematics conference in Washington D. C., Jennifer Wilson (@jwilson828) and I presented the following session.

Leading Learners To Level Up:
Deepening Understanding of Mathematical Practices

8:00 AM – 9:00 AM
Walter E. Washington Convention Center, Salon C

Here’s our agenda:

8:00

 

  1. Opening remarks
  2. Council (30 seconds each): Share your name, school and grade level(s) or course(s) with your table; How are you feeling this morning?
8:10

 

Make Sense of Tasks and Persevere Solving Them (SMP 1)

8:30 Practice like we play… Talent isn’t born. It is grown

  • Odell Beckham Jr videos
  • Discuss effort, skill, and craft
8:30 Look for & Make Use of Structure (SMP 7)

  • Read the CCSS SMP and Mark-Up (Sentence, Phrase, Word)
  • What does it look like in the classroom?
    • Area of an equilateral triangle
    • Difference of Perfect Square
8:55 Goal setting: Back with my learners … Next steps
9:00 End of Session

Here’s my sketch note of our plan:

Here’s the slide deck:

Cross posted on Easing The Hurry Syndrome

#SlowMath – Looking for Structure and Noticing Regularity in Repeated Reasoning from @jwilson828 & @jgough #NCTMAnnual

At the National Council of Teachers of Mathematics conference in Washington D. C., Jennifer Wilson (@jwilson828) and I presented the following session.

#SlowMath – Looking for Structure
and Noticing Regularity in Repeated Reasoning
4:30 PM – 5:30 PM
Walter E. Washington Convention Center, 145 AB

How do we provide opportunities for students to learn to use structure and repeated reasoning? What expressions, equations, and diagrams require making what isn’t pictured visible? Let’s engage in tasks where making use of structure and repeated reasoning can provide an advantage and think about how to provide that same opportunity for students.

Here’s my sketch note of our plan:

Here’s our slide deck:

Cross posted on The Slow Math Movement

#NCTMLive #T3Learns Webinar: Establish Mathematics Goals to Focus Learning, and Elicit and Use Evidence of Student Thinking.

On Wednesday, March 28, 2018, Jennifer Wilson (@jwilson828) and I co-facilitated the first webinar in a four-part series on the Eight Mathematics Teaching Practices from NCTM’s Principles to Actions: Ensuring Mathematical Success for All.
        .
Establish Mathematics Goals to Focus Learning, and
Elicit and Use Evidence of Student Thinking.

Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical understanding and to adjust instruction continually in ways that support and extend learning.

  • How might we communicate with clarity to ensure that learners are focused on high quality mathematical goals?
  • What types of tasks provide opportunities for learners to notice, note, wonder, and take action as agents of their own learning?
                 .
Our slide deck:
Agenda:
7:00 Opening remarks

  • Share your name and grade level(s) or course(s).
  • Norm setting and Purpose
7:05 Establish mathematics goals to focus learning #LL2LU

7:10 Let’s Do Some Math:  Illustrative Math – Fruit Salad?

7:25 Quotes from Taking Action
7:30 Elicit and use evidence of student thinking #LL2LU

7:35 Let’s Do Some Math

7:45 Elicit and use student thinking – Social-Emotional
Talking Points – Elizabeth Statmore

7:55 Close and preview next webinar in the series.

Implement tasks that promote reasoning and problem solving, and use and connect mathematical representations.

Some reflections from the chat window:
  • I learned to pay attention to how my students may first solve the problem or think about it prior to me teaching it to try and see connections that are made or how I can meet them. ~C Heikkila
  • I learned how to pay attention to how I introduce tasks to students. Sometimes I place limits on their responses by telling them what I expect to see in their responses as it relates to content topics. I will be more mindful about task introduction. ~M Roland
  • I learned to pay more attention to mathematical operations, and to look for more solutions that can satisfy the given problem. ~B Hakmi
  •  I also learned the importance of productive struggle and to be patient with my students. ~M James
  • I’m thinking about how to encourage my teachers to intentionally teach the mathematical practices. ~M Hite
  • I learned to pay attention to the learning progressions so I can think of the work as a process and journey. ~B Holden
  • A new mathematical connection for me was the idea of graphing values for the product example. ~A Warden
  • I learned to pay attention to peer discussions to discover how well students are learning the concepts. ~M Grech
  • Am I anticipating the roadblocks to learning? ~L Hendry

An audio recording of the webinar and the chat transcript can be viewed at NCTM’s Partnership Series page.

Cross posted at Easing the Hurry Syndrome

#KSULit2018: Mathematizing Read Alouds

At the 27th Annual KSU Conference on Literature for Children and Young Adults where the theme was Reimagining the Role of Children’s and Young Adult Literature, I presented the following 50-minute session on Tuesday, March 20, 2018.

Mathematizing Read Alouds

How might we deepen our understanding of numeracy using children’s literature? What if we mathematize our read-aloud books to use them in math as well as literacy? We invite you to notice and note, listen and learn, and learn by doing while we share ways to deepen understanding of numeracy and literacy.

Let’s debunk the myth that mathematicians do all work in their heads.  Mathematicians notice, wonder, note, identify patterns, ask questions, revise thinking, and share ideas.  Mathematicians show their thinking with details so that a reader understands without having to ask questions.

What if we pause during read-alouds to give learners a chance to analyze text features, to notice and wonder, to ask and answer questions in context?

How might we inspire and teach learners to make their thinking visible so that a reader understands?

Here’s my sketch note of the plan:

Here are more of the picture books highlighted in this session:

And, a list by approximate grade levels:

Early Learners, Pre-K, and Kindergarten

Kindergarten and 1st Grade

2nd, 3rd, 4th Grade

4th, 5th, 6th Grade

#T3IC: Using technology alongside #SlowMath to promote productive struggle

At the 2018 International T³ Conference in San Antonio, Jennifer Wilson (@jwilson828) and I presented the following two hour power session.

Using technology alongside #SlowMath
to promote productive struggle

How might we shift classroom culture so that productive struggle is part of the norm? What if this same culture defines and embraces mistakes as opportunities to learn? One of the Mathematics Teaching Practices from the National Council of Teachers of Mathematics’ (NCTM) “Principles to Actions” is to support productive struggle in learning mathematics. We want all learners to make sense of tasks and persevere in solving them. The tasks we select and facilitate must offer opportunities for each learner to develop connections and deepen their conceptual understanding.

Join us to learn more about #SlowMath opportunities that encourage students to persevere through challenging tasks instead of allowing their struggle become destructive. This session will address:

  • How might we provide #SlowMath opportunities for all students to notice and question?
  • How do activities that provide for visualization and conceptual development of mathematics help students think deeply about mathematical ideas and relationships?

Here’s the agenda:

8:30 Introductions
8:40 Intent and Purpose

  • Principles to Actions
  • #SlowMath
  • Norms (SMPs)
8:45 3-2-1 Bridge Visible Thinking Routine
8:50 Using Structure to Solve a Task – Circle-Square Task

9:55 3-2-1 Bridge Visible Thinking Routine

  • 2 questions around Productive Struggle (share one with partner and listen to one of partner)
10:00 Construct a Viable Argument to make your thinking visible:
Does (x+1)²=x²+1?

10:25 3-2-1 Bridge Visible Thinking Routine

  • In the chat, 1 analogy/metaphor/simile for Productive Struggle
10:30 Close

Here’s my sketch note of our plan:

Dave Johnston (@Johnston_MSMath) recorded his thinking and learning and shared it with us via Twitter.

And, a little more feedback from Twitter:

Cross posted on The Slow Math Movement