Category Archives: #LL2LU

Summer Learning 2017 – Choices and VTR

How do we learn and grow when we are apart? We workshop, plan, play, rest, and read to name just a few of our actions and strategies.

We make a commitment to read and learn every summer.  This year, in addition to books and a stream of TED talks, Voices of Diversity, we offer the opportunity to read children’s literature and design learning intentions around character and values.

Below is the Summer Learning flyer announcing the choices for this summer.

We will continue to use the Visible Thinking Routine Sentence-Phrase-Word to notice and note important, thought-provoking ideas. This routine aims to illuminate what the reader finds important and worthwhile.

Sentence-Phrase-Word helps learners to engage with and make meaning from text with a particular focus on capturing the essence of the text or “what speaks to you.” It fosters enhanced discussion while drawing attention to the power of language. (Ritchhart, 207 pag.)

However, the power and promise of this routine lies in the discussion of why a particular word, a single phrase, and a sentence stood out for each individual in the group as the catalyst for rich discussion . It is in these discussions that learners must justify their choices and explain what it was that spoke to them in each of their choices. (Ritchhart, 208 pag.)

Continuing to work on our goal, We can design and implement a differentiated action plan across our divisions school to meet all learners where they are, we make our thinking visible on ways to level up.

When we share what resonates with us, we offer others our perspective.  What if we engage in conversation to learn and share from multiple points of view?


Ritchhart, Ron, Mark Church, and Karin Morrison. Making Thinking Visible: How to Promote Engagement, Understanding, and Independence for All Learners. San Francisco, CA: Jossey-Bass, 2011. Print

Anticipating @IllustrateMath’s Jim and Jesse’s Money

How might we learn to show our work so that a reader understanding without having to ask questions? As we work with our young learners, we want them to grow as mathematicians and as communicators.

We ask students to show their work so that a reader understands without having to ask them questions. What details should we add so that our thinking is visible to others?

To show (and to assess) comprehension, we are looking for mathematical flexibility.

Learning goals:

  • I can use ratio and rate reasoning to solve real-world and mathematical problems.
  • I can show my work so that a reader can understanding without having to ask questions.

Activity:

Learning progressions:

Level 4:
I can demonstrate mathematical flexibility with ratio and rate reasoning to show what I know more than one way using tables, equations, double number lines, etc..

Level 3:
I can use ratio and rate reasoning to solve real-world and mathematical problems.

Level 2:
I can make tables of equivalent ratios relating quantities with whole-number measurements, and I can use tables to compare ratios.

Level 1:
I can use guess and check to solve real-world and mathematical problems.

Anticipated solutions:

Using Appropriate Tools Strategically:

I wonder if any of our learners would think to use a spreadsheet. How might technology help with algebraic reasoning? What is we teach students to create tables based on formulas?

How might we experiment with enough tools to display confidence when explaining my reasoning, choices, and solutions?

Choice of an appropriate tool is learner based. How will we know how different tools help unless we experiment too?

Deep Practice: Building Conceptual Understanding in the Middle Grades

2017 NCSM Annual Conference
Deep Practice: Building Conceptual Understanding
in the Middle Grades
Jill Gough, Jennifer Wilson

How might we attend to comprehension, accuracy, flexibility, and then efficiency? What if we leverage technology to enhance our learners’ visual literacy and make connections between words, pictures, and numbers? We will look at new ways of using technology to help learners visualize, think about, connect and discuss mathematics. Let’s explore how we might help young learners productively struggle instead of thrashing around blindly.

Deep practice is built on a paradox: struggling in certain targeted ways — operating at the edges of your ability, where you make mistakes — makes you smarter. Or to put it a slightly different way, experiences where you’re forced to slow down, make errors, and correct them —as you would if you were walking up an ice-covered hill, slipping and stumbling as you go— end up making you swift and graceful without your realizing it. (Coyle, 18 pag.)

The second reason deep practice is a strange concept is that it takes events that we normally strive to avoid —namely, mistakes— and turns them into skills. (Coyle, 20 pag.)

This term productive struggle captures both elements we’re after: we want students challenged and learning. As long as learners are engaged in productive struggle, even if they are headed toward a dead end, we need to bite our tongues and let students figure it out. Otherwise, we rob them of their well-deserved, satisfying, wonderful feelings of accomplishment when they make sense of problems and persevere. (Zager, 128 pag.)


Coyle, Daniel. The Talent Code: Greatness Isn’t Born. It’s Grown. Here’s How. (p. 18-20). Random House, Inc.. Kindle Edition.

Zager, Tracy. Becoming the Math Teacher You Wish You’d Had: Ideas and Strategies from Vibrant Classrooms. Portland, ME.: Stenhouse Publishers, 2017. (pp. 128-129) Print.

PD Planning: #Mathematizing Read Alouds part 2

Time. We need more of it.

How might we gain time without adding minutes to our schedule?

What if we mathematize our read-aloud books to use them in math as well as reading and writing workshop? Could it be that we gain minutes of reading if we use children’s literature to offer context for the mathematics we are learning? Could we add minutes of math if we pause and ask mathematical questions during our literacy block?

Becky Holden and I planned the following professional learning session to build common understanding and language as we expand our knowledge of teaching numeracy through literature.  Every Kindergarten, 1st Grade, 2nd Grade, and 3rd Grade math teacher participated in 3.5-hours of professional learning over the course of two days.

Have you read How Many Seeds in a Pumpkin? by Margaret McNamara, G. Brian Karas?

Learning Targets:

Mathematical Practice:

  • I can make sense of tasks and persevere in solving them.

2nd Grade

  • I can work with equal groups of objects to gain foundations for multiplication.
  • I can skip-count by 2s, 5, 10s, and 100s within 1000 to strengthen my understanding of place value.

3rd Grade

  • I can represent and solve problems involving multiplication and division.
  • I can use place value understanding and properties of operations to perform multi-digit arithmetic.

Learning Progressions:

I can apply mathematical flexibility.
#ShowYourWork Algebra

Here’s what it looked like:

This slideshow requires JavaScript.

Here’s some of what the teacher-learners said:

I learned to look at books with a new critical eye for both literacy and mathematical lessons. I learned that I can read the same book more than once to delve deeper into different skills. This is what we are learning in Workshop as well. Using a mentor text for different skills is such a great way to integrate learning.

I learned how to better integrate math with other subjects as well as push pass the on answer and look for more than one way to answer the question as well as show in more than one way how I got that answer and to take that to the classroom for my students.

I learned how to integrate literacy practice and math practice at once. In addition, I also learned how to deepen learning and ask higher thinking questions, as well as how to let students answer their own questions and have productive struggle.

I learned that there are many different ways to notice mathematical concepts throughout books. It took a second read through for me to see the richness in the math concepts that could be taught.

I learned that there are many children’s literature that writes about multiple mathematical skills and in a very interesting way!

How might we notice and note opportunities to pause, wonder, and question? What is to be gained by blending learning?

#ShowYourWork, make sense and persevere, flexibility with @IllustrateMath

How might we learn to show our work so that a reader understanding without having to ask questions? As we work with our young learners, we want them to grow as mathematicians and as communicators.

We ask students to show their work so that a reader understands without having to ask them questions. What details should we add so that our thinking is visible to others?

To show (and to assess) comprehension, we are looking for mathematical flexibility.

I taught 6th grade math today while Kristi and her team attended ASCD.  She asked me to work with our students on showing their work.  Here’s the plan:

Learning goals:

  • I can use ratio and rate reasoning to solve real-world and mathematical problems.
  • I can show my work so that a reader can understanding without having to ask questions.

Activities:

Learning progressions:

Level 4:
I can demonstrate mathematical flexibility with ratio and rate reasoning to show what I know more than one way using tables, equations, double number lines, etc..

Level 3:
I can use ratio and rate reasoning to solve real-world and mathematical problems.

Level 2:
I can make tables of equivalent ratios relating quantities with whole-number measurements, and I can use tables to compare ratios.

Level 1:
I can use guess and check to solve real-world and mathematical problems.

Anticipated solutions:

Sample student work:

Anticipating @IllustrateMath’s 6.RP Overlapping Squares

To anchor our work in differentiation and mathematical flexibility, we use NCTM’s 5 Practices for Orchestrating Productive Mathematics Discussions by Margaret Smith and Mary Kay Stein.

Kristi Story, Becky Holden, and I worked together during our professional learning time to meet the goals for the session shown below.

From  NCTM’s 5 Practices, we know that we should do the math ourselves, predict (anticipate) what students will produce, and brainstorm what will help students most when in productive struggle and when in destructive struggle.

The learning goals for students include:

I can use ratio reasoning to solve problems and understand ratio concepts.

I can make sense of tasks and persevere in solving them.

I can look for and make use of structure.

I can notice and note to make my thinking visible.

Kristi selected Illustrative Math’s  6.RP Overlapping Squares task for students. Here are the ways we anticipated how students would approach and engage with the task.

This slideshow requires JavaScript.

Our plan for helping students who are stuck includes providing and encouraging the use of a graphing tool such as graph paper or TI-Nspire software installed on their MacBooks. We also intend to use the following learning progressions.

I can make sense of tasks and persevere in solving them.

I can look for and make use of structure.

Finally, we also want our learners to work on how they show their work.

#ShowYourWork Subtraction

When mathematics classrooms focus on numbers, status differences between students often emerge, to the detriment of classroom culture and learning, with some students stating that work is “easy” or “hard” or announcing they have “finished” after racing through a worksheet. But when the same content is taught visually, it is our experience that the status differences that so often beleaguer mathematics classrooms, disappear.  – Jo Boaler


Boaler, Jo, Lang Chen, Cathy Williams, and Montserrat Cordero. “Seeing as Understanding: The Importance of Visual Mathematics for Our Brain and Learning.” Journal of Applied & Computational Mathematics 05.05 (2016): n. pag. Youcubed. Standford University, 12 May. 2016. Web. 18 Mar. 2017.

Stein, Mary Kay., and Margaret Smith. 5 Practices for Orchestrating Productive Mathematics Discussions. N.p.: n.p., n.d. Print.

Goal Work: design and implement a differentiated action plan

As an Academic Leadership Team, Maryellen BerryRhonda MitchellMarsha Harris, and I continue to work on our common goal.

By the end of this year, all teachers should be able to say We can design and implement a differentiated action plan across our grade to meet all learners where they are.

To highlight our commitment to empowering learners to act as agents of their own learning, we continue to share the following progression as a pathway for teams to learn and stretch.

You can see our previous plans here and here. For today’s Wednesday Workshop, we only had about 45 minutes to work and learn together.  As the Academic Leadership Team, we asked ourselves how we might make time for faculty to learn in targeted ways?  We challenged ourselves to model what we want to see from our faculty. So today’s goal is

We can design and implement a differentiated action plan across our divisions to meet all teacher-learners where they are.

Here is the big picture for our plan.Here are the details from the Pre-K – 6th literacy PD:

Here are the details for Early Leaners PD: Here are the details for Math PD:

Teachers of Specials and Learning Team also had different learning plans to differentiate for our readers and the social-emotional and character building work.

We hope our faculty can see that we strive to serve as their teacher team and that we embrace the norm be together, not the same.

We can design and implement a differentiated action plan across our grade to meet all learners where they are.

We can design and implement a differentiated action plan across our divisions to meet all learners where they are.