Category Archives: Learning Progressions

Agenda: Embolden Your Inner Mathematician (10.03.18) Week 4

Week Four of Embolden Your Inner Mathematician

We commit to curation of best practices, connections between mathematical ideas, and communication to learn and share with a broad audience.

Course Goals:
At the end of the semester, teacher-learners should be able to say:

  • I can work within NCTM’s Eight Mathematical Teaching Practices for strengthening the teaching and learning of mathematics.
  • I can exercise mathematical flexibility to show what I know in more than one way.
  • I can make sense of tasks and persevere in solving them.

Today’s Goals

At the end of this session, teacher-learners should be able to say:

  • I can implement tasks that promote reasoning and problem-solving. (#NCTMP2A)
  • I can make sense of tasks and persevere in solving them. (#SMP-1)

From Principles to Actions: Ensuring Mathematical Success for All

Implement tasks that promote reasoning and problem-solving:Effective teaching of mathematics engages students in solving and discussing tasks that promote mathematical reasoning and problem solving and allow multiple entry points and varied solution strategies.

Learning Progressions for today’s goals:

  • I can implement tasks that promote reasoning and problem-solving. (#NCTMP2A)
  • I can make sense of tasks and persevere in solving them. (#SMP-1)

Tasks:

Anticipated ways to mathematize Sheep Won’t SleepSee the next blog post for additional details

[Cross posted at Sum it up and Multiply it out]


Gough, Jill, and Jennifer Wilson. “#LL2LU Learning Progressions.” Experiments in Learning by Doingor Easing the Hurry Syndrome.WordPress, 04 Aug. 2014. Web. 11 Mar. 2017.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 21) Print.

Focus on Learning: Establish Mathematics Goals to Focus Learning

Worry in her beautiful, tired, sad eyes communicates so much. Strain across her face makes my heart ache. As we sit down for coffee with our children playing nearby, she blurts, “I don’t know how to make myself clearer, Jill. They just don’t, won’t, can’t – I don’t know – get it!” I sigh into my coffee which causes steam to fog up my glasses, and she laughs through her tears.  

Knowing that I am an evidence-interested educator, she pulls out her unit plans for me to see and offer feedback. “You were in our class yesterday. What I can I do better…? How do I help them learn?” Love and concern for her students is evident in her thoughtfulness, craftsmanship, and design.

I was in this class yesterday and had been for many days of the unit. I go again and again, because I am learning from her and with her students. This strong, organized, empathetic teacher is, in fact, a very good teacher.  

“What if we take your teaching up a level to a stronger focus on learning? Let’s look at the output that is causing you this worry and stress. Together, can we look at their work and identify what they, in your words, ‘just don’t, won’t, can’t’ do?’ And then, what if we establish mathematics goals to focus learning for you and your students?”

Sitting there on the bank of the Chattahoochee, occasionally interrupted, joyfully, by a toddler that needed to show us a valuable rock or other important discovery, we combed through student work. Outpouring concern and frustration, she talked about each learner, their strengths, and what surprised her about what they did not understand. I listened in awe of what she knew about her students in granular detail, and what she thought they knew but didn’t really. My notes highlighted every success she saw and the joy and pride she felt with every success.

How might we shift her work to increase the amount of success for her and her students? How might we empower learners to take action, self-assess, and ask questions early and often to improve their understanding and communication? What if we take what we just learned about her class and level it out to make her expectations and her thinking visible?

We found four categories or groupings:

  1. As soon I as finish explaining the task, they are all over me, Jill. They have no idea what to do or are too scared to get started. They want me to hold their hand. They are not empowered or safe enough to try.” They are splashing around in the shallow end, maybe even thrashing.
  2. They started, but cannot think flexibly when their first attempt gets them nowhere. They will not hear feedback or collaborate to think differently. They just shut down.
  3. “They are happily working along and find success.” They are willing to work in the pool, but need support build around them to know this is a safe, brave space to draft and redraft to think and learn. Mistakes are opportunities to learn; they do not define you.
  4. “They are first and fast and successful. They want and need more. I want to deepen and connect their learning, not broaden it.” They are willing to dive into the deep end confidently to explore new connections and representations.

This hard, important work helped us gain clarity about what is essential to learn in her classroom. Articulating frustration points as well as success points during her analysis of learning in her classroom revealed and organized a path for communication of learning intentions.

How might we empower and embolden our learners to ask the questions they need to ask by improving the ways we communicate and assess?

What if we make our thinking visible to our learners? What if we display learning progressions in our learning space to show a pathway for learners?

Great teachers lead us just far enough down a path so we can challenge for ourselves.  They provide just enough insight so we can work toward a solution that makes us, makes me want to jump up and shout out to the world, makes me want to step to the next higher level. Great teachers somehow make us want to ask the questions that they want us to answer, overcome the challenge that they, because they are our teacher, believe we need to overcome. (Lichtman, 20 pag.)

We want every learner in our care to be able to say

I can make sense of problems and persevere in solving them.  (CCSS.MATH.PRACTICE.MP1)

But, as a learner…What if I think I can’t? What if I’m stuck? What if I feel lost, confused, or discouraged? How might we offer a pathway for success? What if we provide cues to guide learners and inspire interrogative self-talk?

NCTM’s recent publication, Principles to Actions: Ensuring Mathematical Success for All, calls us to support productive struggle in learning mathematics. How do we encourage our students to keep struggling when they encounter a challenging task? They are accustomed to giving up when they can’t solve a problem immediately and quickly. How do we change the practice of how our students learn mathematics?

How might we coach our learners in to asking more questions? Not just any questions – targeted questions. What if we coach and develop the skill of questioning self-talk?

Interrogative self-talk, the researchers say, “may inspire thoughts about autonomous or intrinsically motivated reasons to pursue a goal.” As ample research has demonstrated, people are more likely to act, and to perform well, when the motivations come from intrinsic choices rather than from extrinsic pressures.  Declarative self-talk risks bypassing one’s motivations. Questioning self-talk elicits the reasons for doing something and reminds people that many of those reasons come from within.” (Pink, 103 pag.)

Our coffee is cold and our children have lost interest in playing together. As we wrap up our reflection, feedback, and planning session, we agree to experiment the next week with her students. How might the work and learning change if we make a pathway for self-assessment and self-talk visible to the learners?

We plan to post #LL2LU SMP-1:  I can make sense of problems and persevere in solving them in the classroom and on the tables for easy reference.  Our immediate learning goal for the students is to make sense and persevere, to ask clarifying questions and try again, to show thinking for clarity and questioning, and to find multiple ways to solutions and find connections.

Excellent teachers think hard about when they will present the learning intention. They don’t just set the learning intentions early in the lesson and then forget about them. They refer to these intentions throughout instruction, keeping students focused on what it is they’re supposed to learn. (Hattie, 55-56 pag.)


Hattie, John A. (Allan); Fisher, Douglas B.; Frey, Nancy; Gojak, Linda M.; Moore, Sara Delano; Mellman, William L.. Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning (Corwin Mathematics Series). SAGE Publications. Kindle Edition.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 21) Print.

Lichtman, Grant, and Sunzi. The Falconer: What We Wish We Had Learned in School. New York: IUniverse, 2008. Print.

Pink, Daniel H. (2012-12-31). To Sell Is Human: The Surprising Truth About Moving Others. Penguin Group US. Kindle Edition.

 

Establish goals to focus learning – Reading Workshop 5th Grade

What if we design a lesson to orchestrate productive discussion, critique the reasoning of others, grow as readers and writers, and deepen understanding through reflection?

The 5th grade team invited me to co-labor with them to help our young learners deepen their understanding of reader’s response journals. As a team, they are focused on implementing and deepening their understanding of Wiliam and Leahy’s  five strategies in Embedding Formative Assessment: Practical Techniques for K-12 Classrooms :

  • Clarify, share, and understand learning intentions and success criteria
  • Engineer effective discussions, tasks, and activities that elicit evidence of learning
  • Provide feedback that moves learning forward
  • Activate students as learning resources for one another
  • Activate students as owners of their own learning

From our Instructional Core work during Pre-Planning, we are working to  establish goals to focus learning.

The 5th Grade team drafted the following learning progressions to make their thinking visible to our new students. As a team, they have established these goals for students. (Level 3 for I can establish goals.)

How might we use these established goals to focus learning? What student outcomes should we anticipate, and what teacher moves should we plan based on prior experience?

At their invitation (#soexcited), I facilitated a lesson on using the drafts above to improve and strengthen reader’s response journal entries while modeling the use of assessing and advancing questions to focus student learning. (Level 4 for I can establish goals and Level 3 for I can focus learning.)

Here’s the plan:

And, the slide deck:

These learning progressions are in each student’s reader’s response journal so they can use them in class and at home.

It was a crisp 30-minute lesson. All of our anticipated outcomes presented during the mini-lesson.

We wanted our students to learn more about

  • making their thinking visible to another reader,
  • adding text evidence to support their ideas,
  • including details that support understanding,
  • participating in productive discussion,
  • critiquing the reasoning of others,
  • growing as readers and writers,
  • using learning progressions to improve their work.

After reading one of my reader’s response entries, our students’ frustration at not having read Bud, Not Buddy by Christopher Paul Curtis surfaced during  their feedback loop to me. This offered me the opportunity to ask their teacher if he or she would have read every independent reading selection made by his or her students. It was a strong “ah ha” moment for our students.

The students’ comments could be categorized in themes. Samples of our students’ reflections are shared as evidence of effort and learning.

  • An ah-ha for me is that my teacher has not read every single book in the universe.
  • I learned to pay attention to text evidence and explaining my text evidence so the reader understands why I added the quotes and page numbers.  I also learned to pay attention to visuals and formatting.
  • I don’t know what an ah-ha moment is. (Oops! Needs more instruction and time to learn.)
  • I know that everyone has not read the book and that I need to add enough detail for people who haven’t read the book.
  • An ah-ha for me is that I think that adding the definitions was smart because I didn’t know some of the words.
  • I learned to pay attention to science experiments. (Yikes! Needs more instruction and time to make sense of the task.)
  • I learned to ask myself if it makes sense and if another person could understand.
  • I learned to ask myself “how can I improve this? What details should I add?”

We know this is not a one-and-done event for our students and our team. We learned about our students and know what me should work on next. We must continue to practice making our thinking visible and hone our skills to use goals to focus learning.

Our school’s mission calls for us to deepen students’ educational experiences and empower students as agents of their own learning while we help them build strong academic foundation.  We strive to make our thinking visible to each other and to our students.

What is to be gained when we make our thinking visible to our students and use established goals to focus learning?


Wiliam, Dylan; Leahy, Siobhan. Embedding Formative Assessment: Practical Techniques for F-12 Classrooms. (Kindle Locations 493-494). Learning Sciences International. Kindle Edition.

 

 

Focus on Instructional Core: establish goals to focus learning

As part of our school’s Pre-Planning, Marsha Harris and I facilitated a faculty-teams workshop to continue our work and learning in the Instructional Core.

Here are my notes from the session.

The agenda, shared ahead of the meeting, looked like this:

The slide deck that accompanies this plan looks like this:

As seen in the slides, we checked in with John Hattie’s research around teacher clarity.

Teacher clarity involves the instructional moves a teacher makes that begin with carefully planning a lesson and making the learning intentions for that lesson or unit clear to herself and her students. 

It extends to consistently evaluating where students are in the learning process and describing the success criteria on which students can assess their own progress and on which the teacher bases her evaluation of a student’s progress with a idea or concept. (Hattie, 38 pag.)

To model teacher clarity, we looked at two drafts for

I can establish goals to focus learning.

First, establish goals:

Then, focus learning:

How might we partner together to establish learning goals? What if we by “do the task as a learner” to notice and note needed prerequisites and anticipate potential learning obstacles? Can we deepen learning experiences by connecting to prior learning standards and strategies?

What if we make learning goals visible so that learners are able to identify what they know and need to know next?  How might we team to anticipate needed questions to assess and advance learning? What if we teach learners to ask more questions to forward and deepen learning? How might we empower learners to level up?

When we focus on learning,
we strengthen the Instructional Core.


Hattie, John A. (Allan); Fisher, Douglas B.; Frey, Nancy; Gojak, Linda M.; Moore, Sara Delano; Mellman, William L.. Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning (Corwin Mathematics Series) (p. 38). SAGE Publications. Kindle Edition.

Traverse session: Experiential and Instructional: Promoting Productive Mathematical Struggle #tvrse18

At Traverse Boulder, I facilitated the following session on Tuesday, June 5, 2018.

Experiential and Instructional:
Promoting Productive Mathematical Struggle

How might we implement tasks that promote reasoning and problem solving to deepen conceptual understanding? Let’s identify and implement high quality tasks grounded in real experiences. Advancing the teaching and learning of mathematics cannot be accomplished with decontextualized worksheets. Discuss, sketch, and solve tasks that promote flexibility, creative and critical reasoning, and problem solving. Learning math should be anchored in depth of understanding through context – not pseudo context – and built on conceptual understanding as well as procedural fluency.

Here’s my sketch note of our plan:

Here’s the slide deck:

Just say no to worksheets.

Say YES to productive struggle and grappling.

Embolden your inner storyteller and leverage the art of questioning.

Context is key.

I can establish mathematics goals to focus learning #NCTMP2A #LL2LU

We strive to grow in our understanding of the Eight Mathematics Teaching Practices from NCTM’s Principles to Actions: Ensuring Mathematical Success for All. This research-informed framework of teaching and learning reflects a core set of high leverage practices and essential teaching skills necessary to promote deep learning of mathematics.

Establish mathematics goals to focus learning.

Effective teaching of mathematics establishes clear goals for the mathematics that students are learning, situates goals within learning progressions, and uses the goals to guide instructional decisions.

In order to support our teaching teams as they stretch to learn more, we drafted the following learning progressions. We choose to provide a couple of pathways to focus teacher effort, understanding, and action.

When working with teacher teams to establish mathematics goals to focus learning, we refer to 5 Practices for Orchestrating Productive Mathematics Discussions by Peg Smith and Mary Kay Stein and Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning by John Hattie, Douglas Fisher, and Nancy Frey along with Principles to Actions: Ensuring Mathematical Success for All by Steve Leinwand.

To deepen our understanding around establishing mathematics goals, we anticipate, connect to prior knowledge, explain the mathematics goals to learners, and teach learners to use these goals to self-assess and level up.

From  NCTM’s 5 Practices for Orchestrating Productive Mathematics Discussions, we know that we should do the math ourselves, predict (anticipate) what students will produce, and brainstorm what will help students most when in productive struggle and when in destructive struggle.

Once prior knowledge is activated, students can make connections between their knowledge and the lesson’s learning intentions. (Hattie, 44 pag.)

To strengthen our understanding of using mathematics goals to focus learning, we make the learning goals visible to learners, ask assessing and advancing questions to empower students, and listen and respond to support learning and leveling up.

Excellent teachers think hard about when they will present the learning intention. They don’t just set the learning intentions early in the lesson and then forget about them. They refer to these intentions throughout instruction, keeping students focused on what it is they’re supposed to learn. (Hattie, 55-56 pag.)

How might we continue to deepen and strengthen our ability to advance learning for every learner?

What if we establish mathematics learning goals to focus learning?

Cross posted on Easing The Hurry Syndrome


Hattie, John A. (Allan); Fisher, Douglas B.; Frey, Nancy; Gojak, Linda M.; Moore, Sara Delano; Mellman, William L.. Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning (Corwin Mathematics Series). SAGE Publications. Kindle Edition.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 21) Print.

Stein, Mary Kay., and Margaret Smith. 5 Practices for Orchestrating Productive Mathematics Discussions. N.p.: n.p., n.d. Print.

#KSULit2018: Mathematizing Read Alouds

At the 27th Annual KSU Conference on Literature for Children and Young Adults where the theme was Reimagining the Role of Children’s and Young Adult Literature, I presented the following 50-minute session on Tuesday, March 20, 2018.

Mathematizing Read Alouds

How might we deepen our understanding of numeracy using children’s literature? What if we mathematize our read-aloud books to use them in math as well as literacy? We invite you to notice and note, listen and learn, and learn by doing while we share ways to deepen understanding of numeracy and literacy.

Let’s debunk the myth that mathematicians do all work in their heads.  Mathematicians notice, wonder, note, identify patterns, ask questions, revise thinking, and share ideas.  Mathematicians show their thinking with details so that a reader understands without having to ask questions.

What if we pause during read-alouds to give learners a chance to analyze text features, to notice and wonder, to ask and answer questions in context?

How might we inspire and teach learners to make their thinking visible so that a reader understands?

Here’s my sketch note of the plan:

Here are more of the picture books highlighted in this session:

And, a list by approximate grade levels:

Early Learners, Pre-K, and Kindergarten

Kindergarten and 1st Grade

2nd, 3rd, 4th Grade

4th, 5th, 6th Grade