Tag Archives: Beyond Answers

Summer Learning 2017 – Choices and VTR – here’s the data

In a previous post, Summer Learning 2017 – Flyer and Choices, I describe our summer learning plans and choices.  We make a commitment to read and learn every summer.  This year, in addition to books and a stream of TED talks, Voices of Diversity, we offer the opportunity to read children’s literature and design learning intentions around character and values.

Here’s the data on what we selected to learn:

Another way to consider the data:

Throughout the year, the Academic Leadership Team has been working with teacher-teams in many ways in support of our team goal shown below.

We can design and implement a differentiated action plan across our  divisions to meet all learners where they are.

Tier 1 Differentiation: Learner Choice and Voice

Our plan involves using the Visible Thinking Routine Sentence-Phrase-Word across all selections to notice and note important, thought-provoking ideas.

Tier 2 Differentiation: Level Up Pathway to Success

To meet our expectations, learners should read, view, or plan closely using the Visible Thinking Routine Sentence-Phrase-Word when engaging with their selection.  To exceed our expectations, learners again have choice.  They can use both Sentence-Phrase-Word and Connect-Extend-Challenge for deeper, connected thinking. Or, learners can learn and share publicly using #TrinityLearns, #TrinityReads or posting comments on the connected blog pages for reading a book, viewing the TED talks, or using children’s literature to build character foundation.

Be together, not the same. Learn and share. Level up when you can.

Productive struggle with deep practice – what do experts say

NCTM’s publication, Principles to Action, in the Mathematics Teaching Practices, calls us to support productive struggle in learning mathematics. How do we encourage our students to keep struggling when they encounter a challenging task? How many learners are accustomed to giving up when they can’t solve a problem immediately and quickly. How do we change the practice of how our students learn mathematics?

Effective teaching not only acknowledges the importance of both conceptual understanding and procedural fluency but also ensures that the learning of procedures is developed over time, on a strong foundation of understanding and the use of student-generated strategies in solving problems. (Leinwand, 46 pag.)

Low floor, high ceiling tasks allow all students to access ideas and take them to very high levels. Fortunately, [they] are also the most engaging and interesting math tasks, with value beyond the fact that they work for students of different prior achievement levels. (Boaler, 115 pag.)

Deep learning focuses on recognizing relationships among ideas.  During deep learning, students engage more actively and deliberately with information in order to discover and understand the underlying mathematical structure. (Hattie, 136 pag.)

Deep practice is built on a paradox: struggling in certain targeted ways — operating at the edges of your ability, where you make mistakes — makes you smarter.  (Coyle, 18 pag.)

Or to put it a slightly different way, experiences where you’re forced to slow down, make errors, and correct them —as you would if you were walking up an ice-covered hill, slipping and stumbling as you go— end up making you swift and graceful without your realizing it. (Coyle, 18 pag.)

The second reason deep practice is a strange concept is that it takes events that we normally strive to avoid —namely, mistakes— and turns them into skills. (Coyle, 20 pag.)

We need to give students the opportunity to develop their own rich and deep understanding of our number system.  With that understanding, they will be able to develop and use a wide array of strategies in ways that make sense for the problem at hand. (Flynn, 8 pag.)

…help students slow down and really think about problems rather than jumping right into solving them. In making this a routine approach to solving problems, she provided students with a lot of practice and helped them develop a habit of mind for reading and solving problems. (Flynn, 8 pag.)

This term productive struggle captures both elements we’re after:   we want students challenged and learning. As long as learners are engaged in productive struggle, even if they are headed toward a dead end, we need to bite our tongues and let students figure it out. Otherwise, we rob them of their well-deserved, satisfying, wonderful feelings of accomplishment when they make sense of problems and persevere. (Zager, 128-129 ppg.)

Encourage students to keep struggling when they encounter a challenging task.  Change the practice of how our students learn mathematics.

Let’s not rob learners of their well-deserved, satisfying, wonderful feelings of accomplishment when they make sense of problems and persevere.


Boaler, Jo. Mathematical Mindsets: Unleashing Students’ Potential through Creative Math, Inspiring Messages and Innovative Teaching (p. 115). Wiley. Kindle Edition.

Coyle, Daniel. The Talent Code: Greatness Isn’t Born. It’s Grown. Here’s How. (p. 20). Random House, Inc.. Kindle Edition.

Flynn, Michael, and Deborah Schifter. Beyond Answers: Exploring Mathematical Practices with Young Children. Portland, ME: Stenhouse, 2017. (p. 8) Print.

Hattie, John A. (Allan); Fisher, Douglas B.; Frey, Nancy, Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning (Corwin Mathematics Series) (p. 136). SAGE Publications. Kindle Edition.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Zager, Tracy. Becoming the Math Teacher You Wish You’d Had: Ideas and Strategies from Vibrant Classrooms. Portland, ME.: Stenhouse Publishers, 2017. (pp. 128-129) Print.

Deep understanding: visualize, connect, comprehend

We need to give students the opportunity to develop their own rich and deep understanding of our number system.  With that understanding, they will be able to develop and use a wide array of strategies in ways that make sense for the problem at hand.  (Flynn, 8 pag.)

Let’s say that the essential-to-learn is I can subtract within 100.  In our community we hold essential I can show what I know more than one way. 

Using our anchor text, we find the following strategies:

  • I can subtract tens and one on a hundred chart.
  • I can count back to subtract on an open number line.
  • I can add up to subtract on an open number line.
  • I can break apart numbers to subtract.
  • I can subtract using compensation.

What if we engage, as a team, to deepen our understanding of subtraction?

Deep learning focuses on recognizing relationships among ideas. During deep learning, students engage more actively and deliberately with information in order to discover and understand the underlying mathematical structure. (Hattie, 136 pag.)

In his Effective Practices for Advancing the Teaching and Learning of Mathematics class last week, Mike Flynn highlighted three advantages  of using representations to deepen understanding.

  • Representations build conceptual understanding and help assess comprehension.
  • Representations serve as a tool to make sense of the task and the mathematics.
  • Representations help develop proof of generalizations.

What if we, as a team, prepare to facilitate experiences so that learners can say I can subtract within 100 by deepening our understanding with words, pictures, numbers, and symbols?

Context: Annie had some money in her “mad money” jar.  Today, she added $39 to the jar and discovered that she now has $65. How much money was in the “mad money” jar before today?

2ndgrade65-39

Can we connect the context to each of the above strategies? Can we connect one strategy to another strategy?

If we challenge ourselves to “do the math” using words, pictures, numbers, and symbols, we deepen our understanding and increase our ability to ask more questions to advance thinking.

How might we use Van de Walle’s ideas for developing conceptual understanding through multiple representations to assess comprehension and understanding?


Flynn, Michael. Beyond Answers: Exploring Mathematical Practices with Young Children. Portland, Maine.: Stenhouse, 2017. Print.

Hattie, John A. (Allan); Fisher, Douglas B.; Frey, Nancy; Gojak, Linda M.; Moore, Sara Delano; Mellman, William L. (2016-09-16). Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning (Corwin Mathematics Series). SAGE Publications. Kindle Edition.

Van de Walle, John. Teaching Student-centered Mathematics: Developmentally Appropriate Instruction for Grades Pre-K-2. Boston: Pearson, 2014. Print.