Tag Archives: Jennifer Wilson

#NCSM17 #Sketchnotes Wednesday Summary

I’m attending the  National Council of Supervisors of Mathematics  2017 conference in San Antonio.  Here are my notes from Wednesday along with the session descriptions from the presenters.

Conferring with Young Mathematicians at Work:
The Process of Teacher Change
Cathy Fosnot

If children are to engage in problem solving with tenacity and confidence, good questioning on the part of teachers during conferrals is critical. Questioning must engender learner excitement and ownership of ideas, while simultaneously be challenging enough to support further development. Video of conferrals in action will be used for analysis, and a Landscape of Learning on the process of teacher change is shared as a lens for coaching.

Leading to Support Procedural Fluency for All Students
Jennifer Bay-Williams

Principles to Actions describes effective teaching practices that best support student learning. In this session we will focus on one of those teaching practices: “build procedural fluency from conceptual understanding.” Ensuring that every child develops procedural fluency requires understanding what fluency means, knowing research related to developing procedural fluency and conceptual understanding, and being able to translate these ideas into effective classroom practices. That is the focus of this session! We will take a look at research, connections to K–12 classroom practice, and implications for us as coaches and teacher leaders.

How to Think Brilliantly and Creatively in Mathematics: Some Guiding Thoughts for Teachers, Coaches, Students—Everyone!
James Tanton

This lecture is a guide for thinking brilliantly and creatively in mathematics designed for K–12 educators and supervisors, students, and all those seeking joyful mathematics doing. How do we model and practice uncluttered thinking and joyous doing in the classroom, pursue deep understanding over rote practice and memorization, and promote the art of successful ailing? Our complex society demands of its next generation not only mastery of quantitative skills, but also the confidence to ask new questions, explore, wonder, fail, persevere, succeed in solving problems and to innovate. Let’s not only send humans to Mars, let’s also foster in our next generation the might to get those humans back if something goes wrong! In this talk, I will explore five natural principles of mathematical thinking. We will all have fun seeing how school mathematics content is a vehicle for masterful ingenuity and joy.

Deep Practice:
Building Conceptual Understanding in the Middle Grades
Jill Gough, Jennifer Wilson

How might we attend to comprehension, accuracy, flexibility, and then efficiency? What if we leverage technology to enhance our learners’ visual literacy and make connections between words, pictures, and numbers? We will look at new ways of using technology to help learners visualize, think about, connect and discuss mathematics. Let’s explore how we might help young learners productively struggle instead of thrashing around blindly.

When Steve Leinwand asked if I was going to sketch our talk, I jokingly said that I needed someone to do it for me. We are honored to have this gift from Sharon Benson. You can see additional details on my previous post.

Leading Mathematics Education in the Digital Age

Leading Mathematics Education in the Digital Age
2017 NCSM Annual Conference
Pre-Conference Sessions
Jennifer Wilson
Jill Gough

How can leaders effectively lead mathematics education in the era of the digital age?  

There are many ways to contribute in our community and the global community, but we have to be willing to offer our voices. How might we take advantage of instructional tools to purposefully ensure that all students and teachers have voice: voice to share what we know and what we don’t know yet; voice to wonder what if and why; voice to lead and to question.

Sneak peek: Leading Mathematics Education in the Digital Age

Leading Mathematics Education in the Digital Age
2017 NCSM Annual Conference
Pre-Conference Session
Sunday, April 2, 2017 from 1:00-5:00 p.m.
Jennifer Wilson
Jill Gough

How can leaders effectively lead mathematics education in the era of the digital age? There are many ways to contribute in our community and the global community, but we have to be willing to offer our voices. How might we take advantage of instructional tools to purposefully ensure that all students and teachers have voice: voice to share what we know and what we don’t know yet; voice to wonder what if and why; voice to lead and to question?

Sneak peek for our session includes:

How might we strengthen our flexibility to make sense and persevere? What if we deepen understanding to show what we know more than one way?

Interested? Here’s a sneak peek at a subset of our slides as they exist today. Disclaimer: Since this is a draft, the slides may change before we see you in San Antonio.

I wonder what Jennifer’s sneak peek looks like? Do you?

Using technology alongside #SlowMath to promote productive struggle

Using technology alongside #SlowMath
to promote productive struggle
2017 T³™ International Conference
Sunday, March 12, 8:30 – 10 a.m.
Columbus AB, East Tower, Ballroom Level
Jennifer Wilson
Jill Gough

One of the Mathematics Teaching Practices from the National Council of Teachers of Mathematics’ (NCTM) “Principles to Actions” is to support productive struggle in learning mathematics.

  • How does technology promote productive struggle?
  • How might we provide #SlowMath opportunities for all students to notice and question?
  • How do activities that provide for visualization and conceptual development of mathematics help students think deeply about mathematical ideas and relationships?

[Cross posted at Easing the Hurry Syndrome]

Deep practice: building conceptual understanding in the middle grades

Deep practice:
building conceptual understanding in the middle grades
2017 T³™ International Conference
Friday, March 10, 10:00 – 11:30 a.m.
Dusable, West Tower, Third Floor
Jill Gough
Jennifer Wilson

How might we attend to comprehension, accuracy, flexibility and then efficiency? What if we leverage technology to enhance our learners’ visual literacy and make connections between words, pictures and numbers? We will look at new ways of using technology to help learners visualize, think about, connect and discuss mathematics. Let’s explore how we might help young learners productively struggle instead of thrashing around blindly.

[Cross posted at Easing The Hurry Syndrome]

Learner choice: using appropriate tools strategically takes time and tools

All students benefit from using tools and learning how to use them for a variety of purposes.  If we don’t make tools readily available and value their use, our students miss out on major learning opportunities. (Flynn, 106 pag.)

I’m taking the #MtHolyokeMath #MTBoS course, Effective Practices for Advancing the Teaching and Learning of Mathematics.  Zachary Champagne facilitated the second session and used The Cycling Shop task from Mike Flynn‘s TMC article.

screen-shot-2017-02-03-at-2-50-42-pm

You can see the notes I started on paper.

mtholyokemath-2-zakchamp

Jim, Casey and I used a pre-made Google slide deck provided to us to collaborate since we were located in GA, MA, and CA.  We challenged ourselves to consider wheels after working with 8 wheels.

Here’s what our first table looked like.

cyclingshop1

Now, I was having trouble keeping up with the number of wheels and the number of cycles.  So I did this:

screen-shot-2017-02-03-at-3-08-56-pm

This made it both better and worse for me (and for my group).

Here’s an interesting thing.  I’ve been studying, practicing, and teaching the Standards for Mathematical Practices. Jennifer Wilson and I have written a learning progression to help learners learn to say I can use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. (Sage, 6 pag.)

Clearly, I was not even at Level 1 during class.  Not once – not once – during class did it occur to me how much a spreadsheet would help me, strategically.

8wheelsspreadsheet

The spreadsheet would calculate the number of wheels automatically for each row so that I could confirm correct combinations.  (You can view this spreadsheet and make a copy to play with if you are interested.)

When making mathematical models, [mathematically proficient students] know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. (Sage, 6 pag.)

With a quick copy and paste, I could tackle any number of wheels using my spreadsheet.  I can look for and make use of structure emerged quickly when using the spreadsheet strategically.  (I want to also highlight color as a strategic tool.) Play with it; you’ll see.

9_wheelsspreadsheet

[Mathematically proficient students] are able to use technological tools to explore and deepen their understanding of concepts. (Sage, 6 pag.)

screen-shot-2017-02-03-at-4-03-03-pm

There is no possible way I would have the stamina to seek all the combinations for 25 or 35 wheels by hand, right?

Students have access to a wide assortment of tools that they must learn to use for their mathematical work. The sheer volume of possibilities can seem overwhelming, but with time and experience, students can learn how to choose the right tool for the task at hand and how to use it strategically to reach their goal. (Flynn, 106 pag.)

Important to repeat, “with time and experience, students can learn how to choose the right tool for the task at hand and how to use it strategically to reach their goal.

For this to happen, we need to have a solid understanding of the kinds of tools available, the purpose of each tool, and how students can learn to use them flexibly and strategically in any given situation. This also means that we have to make these tools readily available to students, encourage their use, and provide them with options so they can decide which tool to use and how to use it. If we make all the decisions for them, we remove that critical component of MP5 where students make decisions based on their knowledge and understanding of the tools and the task at hand. (Flynn, 106 pag.)

To be clear, a spreadsheet was available to me during class, but I didn’t see it.  How might we make tools readily available and visible for learners to choose?

When we commit to empower students to deepen their understanding, we make tools available and encourage exploration and use, so that each learner makes decisions for themselves. In other words, how do we help learners to level up in both content and practice?

What if we make I can look for and make use of structure; I can use appropriate tools strategically; and I can make sense of tasks and persevere in solving them essential to learn for every learner?

How might we offer tools and time?

It’s about learning by doing, right?


Flynn, Michael. Beyond Answers: Exploring Mathematical Practices with Young Children. Portland, Maine.: Stenhouse, 2017. Print.

Flynn, Mike. “The Cycling Shop.” Nctm.org. Teaching Children Mathematics, Aug. 2016. Web. 03 Feb. 2017.

Common Core State Standards.” The SAGE Encyclopedia of Contemporary Early Childhood Education (n.d.): n. pag. Web.

NCSM 2016: Sketch notes for learning

NCSM 2016 National Conference – BUILDING BRIDGES BETWEEN LEADERSHIP AND LEARNING MATHEMATICS:  Leveraging Education Innovation and Research to Inspire and Engage

Below are my notes from each session that I attended and a few of the lasting takeaways.

Day One


Keith Devlin‘s keynote was around gaming for learning. He highlighted the difference in doing math and learning math.  I continue to ponder worthy work to unlock potential.  How often do we expect learners to be able to write as soon as they learn? If we connect this to music, reading, and writing, we know that symbolic representations comes after thinking and understanding.  Hmm…Apr_11_NCSM-Devlin

The Illustrative Mathematics team challenged us to learn together: learn more about our students, learn more about our content, learn more about essentials for our grade and the grades around us.  How might we learn a lot together?

Conference Sketch Note - 25

Graham Fletcher teamed with Arjan Khalsa. While the title was Digital Tools and Three-Act Tasks: Marriage Made in the Cloud, the elegant pedagogy and intentional teacher moves modeled to connect 3-act tasks to Smith/Stein’s 5 Practices was masterful.
Conference Sketch Note - 26

Jennifer Wilson‘s #SlowMath movement calls for all to S..L..O..W d..o..w..n and savor the mathematics. Notice and note what changes and what stays the same; look for and express regularity in repeated reasoning; deepen understanding through and around productive struggle. Time is a variable; learning is the constant.  Embrace flexibility and design for learning.

Conference Sketch Note - 27

Bill McCallum challenges us to mix memory AND understanding.  He used John Masefield’s Sea Fever to highlight the need for both. Memorization is temporary; learners must make sense and understand to transfer to long-term memory.  How might we connect imagery and poetry of words to our discipline? What if we teach multiple representations as “same story, different verse”?

Conference Sketch Note - 28

Uri Treisman connects Carol Dweck’s mindsets work to nurturing students’ mathematical competence.  Learners persist more often when they have a positive view of their struggle. How might we bright spot learners’ work and help them deepen their sense of belonging in our classrooms and as mathematicians?

Conference Sketch Note - 29

Day Two


Jennifer Wilson shared James Popham’s stages of formative assessment in a school community. How might we learn and plan together? What if our team meetings focus on the instructional core, the relationships between learners, teachers, and the content?

Conference Sketch Note - 30

Michelle Rinehart asks about our intentional leadership moves.  How are we serving our learners and our colleagues as a growth advocate? Do we bright spot the work of others as we learn from them? What if we team together to target struggle, to promote productive struggle, and to persevere? Do we reflect on our leadership moves?

Conference Sketch Note - 31

Karim Ani asked how often we offered tasks that facilitate learning where math is used to understand the world.  How might we reflect on how often we use the world to learn about math and how often we use math to understand the world in which we live? Offer learners relevance.

Conference Sketch Note - 32

Day Three


Zac Champagne started off the final day of #NCSM16 with 10 lessons for teacher-learners informed from practice through research. How might we listen to learn what our learners already know? What if we blur assessment and instruction together to learn more about our learners and what they already know?

Conference Sketch Note - 33

Eli Luberoff and Kim Sadler created social chatter that matters using Desmos activities that offered learners the opportunities to ask and answer questions in pairs.  How might we leverage both synchronous and asynchronous communication to give learners voice and “hear” them?

Conference Sketch Note - 34

Fred Dillon and Melissa Boston facilitated a task to highlight NCTM’s Principles to Actions ToolKit to promote productive struggle.  This connecting, for me, to the instructional core.  How might we design intentional learning episodes that connect content, process and teacher moves? How might we persevere to promote productive struggle? We take away productive struggle opportunities for learners when we shorten our wait time and tell.

Conference Sketch Note - 35