Tag Archives: Steve Leinwand

Sketch notes from #TMC17 (a.k.a. Twitter Math Camp)

Becky Holden (@bholden86) and I attended Twitter Math Camp (#TMC17) at Holy Innocents Episcopal School in Atlanta, GA from Thursday, July 27 to Sunday, July 30.

This conference is by teachers, for teachers. The structure of TMC contains the following lengths of presentations:

  • Morning sessions (One session that meets Thursday, Friday and Saturday mornings for 2 hours each morning)
  • Afternoon sessions (Individual 1/2 hour sessions on Thursday)
  • Afternoon sessions (Individual 1 hour sessions Thursday, Friday and Saturday)

To honor Carl Oliver‘s (@carloliwitter) #PushSend request/challenge, here are my sketch notes from the sessions I attended.

Differentiating CCSS Algebra 1
— from drab to fab using Exeter Math 1 & Exploratory Talk
Elizabeth Statmore (@cheesemonkeysf)

The Politics(?) of Mathematics Teaching
Grace Chen (@graceachen)

What does it mean to say that mathematics teaching is political, and what does that mean for our moral and ethical responsibility as mathematics teachers?

Bridging elementary skills & concepts to high school & beyond
Glenn Waddell, Jr. (@gwaddellnvhs)

Micro-decisions in Questioning
David Petersen (@calcdave)

All I Really Need To Know I Learned From The MTBoS
…Not Really, But Close
Graham Fletcher (@gfletchy)

Hitting The Darn ‘Send’ Button
Carl Oliver (@carloliwitter)

Practical Ideas on the Kind of Coaching
We Need to Provide and Demand
Steve Leinwand (@steve_leinwand)

What is not captured in my notes is play: game night, trivia, crocheting, and tons of fun.

How might we grow, learn, and play in community when together and when apart?

Productive struggle with deep practice – what do experts say

NCTM’s publication, Principles to Action, in the Mathematics Teaching Practices, calls us to support productive struggle in learning mathematics. How do we encourage our students to keep struggling when they encounter a challenging task? How many learners are accustomed to giving up when they can’t solve a problem immediately and quickly. How do we change the practice of how our students learn mathematics?

Effective teaching not only acknowledges the importance of both conceptual understanding and procedural fluency but also ensures that the learning of procedures is developed over time, on a strong foundation of understanding and the use of student-generated strategies in solving problems. (Leinwand, 46 pag.)

Low floor, high ceiling tasks allow all students to access ideas and take them to very high levels. Fortunately, [they] are also the most engaging and interesting math tasks, with value beyond the fact that they work for students of different prior achievement levels. (Boaler, 115 pag.)

Deep learning focuses on recognizing relationships among ideas.  During deep learning, students engage more actively and deliberately with information in order to discover and understand the underlying mathematical structure. (Hattie, 136 pag.)

Deep practice is built on a paradox: struggling in certain targeted ways — operating at the edges of your ability, where you make mistakes — makes you smarter.  (Coyle, 18 pag.)

Or to put it a slightly different way, experiences where you’re forced to slow down, make errors, and correct them —as you would if you were walking up an ice-covered hill, slipping and stumbling as you go— end up making you swift and graceful without your realizing it. (Coyle, 18 pag.)

The second reason deep practice is a strange concept is that it takes events that we normally strive to avoid —namely, mistakes— and turns them into skills. (Coyle, 20 pag.)

We need to give students the opportunity to develop their own rich and deep understanding of our number system.  With that understanding, they will be able to develop and use a wide array of strategies in ways that make sense for the problem at hand. (Flynn, 8 pag.)

…help students slow down and really think about problems rather than jumping right into solving them. In making this a routine approach to solving problems, she provided students with a lot of practice and helped them develop a habit of mind for reading and solving problems. (Flynn, 8 pag.)

This term productive struggle captures both elements we’re after:   we want students challenged and learning. As long as learners are engaged in productive struggle, even if they are headed toward a dead end, we need to bite our tongues and let students figure it out. Otherwise, we rob them of their well-deserved, satisfying, wonderful feelings of accomplishment when they make sense of problems and persevere. (Zager, 128-129 ppg.)

Encourage students to keep struggling when they encounter a challenging task.  Change the practice of how our students learn mathematics.

Let’s not rob learners of their well-deserved, satisfying, wonderful feelings of accomplishment when they make sense of problems and persevere.


Boaler, Jo. Mathematical Mindsets: Unleashing Students’ Potential through Creative Math, Inspiring Messages and Innovative Teaching (p. 115). Wiley. Kindle Edition.

Coyle, Daniel. The Talent Code: Greatness Isn’t Born. It’s Grown. Here’s How. (p. 20). Random House, Inc.. Kindle Edition.

Flynn, Michael, and Deborah Schifter. Beyond Answers: Exploring Mathematical Practices with Young Children. Portland, ME: Stenhouse, 2017. (p. 8) Print.

Hattie, John A. (Allan); Fisher, Douglas B.; Frey, Nancy, Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning (Corwin Mathematics Series) (p. 136). SAGE Publications. Kindle Edition.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Zager, Tracy. Becoming the Math Teacher You Wish You’d Had: Ideas and Strategies from Vibrant Classrooms. Portland, ME.: Stenhouse Publishers, 2017. (pp. 128-129) Print.