Tag Archives: @cheesemonkeysf

Sheep Won’t Sleep #Mathematizing Read Alouds – implement tasks that promote reasoning and problem solving

How might we deepen our understanding of numeracy using children’s literature? What if we mathematize our read aloud books to use them in math as well as reading and writing workshop?

Have you read Sheep Won’t Sleep: Counting by 2’s, 5’s, and 10’s by Judy Cox?

This week’s Embolden Your Inner Mathematician session is designed to learn and practice both a Mathematics Teaching Practice and a Standard for Mathematical Practice.

Implement Tasks that Promote
Reasoning and Problem Solving.

Effective teaching of mathematics engages students in solving and discussing tasks that promote mathematical reasoning and problem solving and allow multiple entry points and varied solution strategies.

Jennifer Wilson and I use the following learning progression to help teachers and teaching teams calibrate their work.

From the Standards for Mathematical Practice,

Construct viable arguments and
critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

We choose to reword this for our students. Instead of I can construct a viable argument, we say I can show my work so a reader understands having to ask me questions.

We use the following learning progression to help students self-assess and reach to deepen their learning.

Now, Sheep Won’t Sleep: Counting by 2’s, 5’s, and 10’s by Judy Cox gives away the mathematical thinking on some pages. We decided to read the book and ask our students to listen and take notes as readers, writers, and mathematicians.  Mathematicians notice and note details, look for patterns, and ask questions.  To support listening and comprehension (a.k.a. empower learners to make sense and persevere), we created visuals for quasi-reader’s theater and spelled sheep, alpaca, llama, and yak.  (Level  2; check.)

We also practiced a keep the pace up and get kids collaborating instead of relying on the teacher strategy we are learning from Elizabeth Statmore.

And every day I used 10-2 processing to keep the pace up and get kids collaborating instead of relying on me. For every ten minutes of notes, I gave two minutes of processing time to catch up and collaborate on making their notes accurate. (Statmore, n pag.)

Instead of 10-2 processing, we took a minute after every couple of pages to intentionally turn and talk with a partner with the express purpose of comparing and improving our notes and mathematical communication.

As teachers, we are striving to implement tasks that promote reasoning and problem solving.   Sheep Won’t Sleep: Counting by 2’s, 5’s, and 10’s is a counting book so 1st graders can tackle the math. 2nd and 3rd graders can use this to connect skip counting and repeated addition to multiplication and to use and connect mathematical representations. 4th and 5th graders can use this to use and connect mathematical representations while attending to precision. (Level 1; check.)

Here’s a messy version of how we anticipated student work and thinking.

These read-aloud moments open up the opportunity for rich discussion and engaging questions. Students have the opportunity for more organic and deeper understanding of mathematical concepts thanks to the book that brought them to life, and it is an engaging way to look at math through a different lens.

As Professor of Mathematics Education at the Stanford Graduate School of Education Jo Boaler explains in her book Mathematical Mindsets: Unleashing Students’ Potential through Creative Math, Inspiring Messages and Innovative Teaching, “Mathematics is a subject that allows for precise thinking, but when that precise thinking is combined with creativity, flexibility, and multiplicity of ideas, the mathematics comes alive for people.”


Boaler, Jo. Mathematical Mindsets: Unleashing Students’ Potential through Creative Math, Inspiring Messages and Innovative Teaching (p. 115). Wiley. Kindle Edition.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. Print.

Standards for Mathematical Practice.” Standards for Mathematical Practice. N.p., n.d. Web. 15 Dec. 2014.

Statmore, Elizabeth. “Cheesemonkey Wonders.” First Week and AVID Strategies. 25 Aug. 2018.

Embolden Your Inner Mathematician: Week 2 agenda

Elicit and use evidence of student thinking.

Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical understanding and to adjust instruction continually in ways that support and extend learning.
  Principles to Actions: Ensuring Mathematical Success for All

Slide deck

7:15 Establishing Intent, Purpose, Norm Setting

8:00 Continuing Talking Points – Elizabeth Statmore (@chessemonkeysf)

8:15 Number SplatsSteve Wyborney (@SteveWyborney)
8:25 Fraction SplatsSteve Wyborney (@SteveWyborney)
8:45 Planning for Splats

9:00 Closure and Reflection

  • I learned to pay attention to…
  • I learned to ask myself…
  • A new mathematical connection is…
9:15 End of session

Homework:

  • Elicit and use evidence of student thinking using Splats. What will/did you learn?
  • Write to describe your quest for Closest to One using Open Middle worksheet with I can show my work so a reader understands without asking me questions.
  • Deeply Read pp. 207-211 from TAKING ACTION: Implementing Effective Mathematics Teaching Practices in K-Grade 5
    • What the Research says: Elicit and Use Evidence of Student Thinking
    • Promoting Equity by Eliciting and Using Evidence of Student Thinking
  • Read one of the following from TAKING ACTION: Implementing Effective Mathematics Teaching Practices in K-Grade 5
    • pp.183-188 Make a Ten
    • pp.189-195 The Odd and Even Task
    • pp. 198-207 The Pencil Task

 


Kelemanik, Grace, and Amy Lucent. “Starting the Year with Contemplate Then Calculate.” Fostering Math Practices.

Kaplinsky, Robert, and Peter Morris. “Closest to One.” Open Middle.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.

Statmore, Elizabeth. “Cheesemonkey Wonders.” #TMC14 GWWG: Talking Points Activity – Cultivating Exploratory Talk through a Growth Mindset Activity, 1 Jan. 1970.

Wyborney, Steve. “The Fraction Splat! Series.” Steve Wyborney’s Blog: I’m on a Learning Mission., 26 Mar. 2017.

Embolden Your Inner Mathematician Week 1: Talking Points

How might we deepen our understanding of NCTM’s teaching practices? What if we team to learn and practice?

For our first session of Embolden Your Inner Mathematician, we focus on Subitizing and Number Talks: Elicit and use evidence of student thinking.

From Principles to Actions: Ensuring Mathematical Success for All

Elicit and use evidence of student thinking.
Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical understanding and to adjust instruction continually in ways that support and extend learning.

And, from Taking Action: Implementing Effective Mathematics Teaching Practices in K-Grade 5

Meeting the demands of world-class standards for student learning requires teachers to engage in what as been referred to as “ambitious teaching.” Ambitious teaching stands in sharp contrast to what many teachers experienced themselves as learners of mathematics. (Smith, 3 pag.)

In ambitious teaching, the teacher engages students in challenging tasks and collaborative inquiry, and then observes and listens as students work so that she or he can provide an appropriate level of support to diverse learners.  The goal is to ensure that each and every student succeeds in doing meaningful, high-quality work, not simply executing procedures with speed and accuracy. (Smith, 4 pag.)

Worth repeating:

The goal is to ensure that each and every student succeeds in doing meaningful, high-quality work, not simply executing procedures with speed and accuracy.

Let’s pay attention to the whole child. Content is mission critical, but so are disposition and efficacy.  What if we learn more about our students disposition to support the social/emotional well-being of our mathematicians?  How might we elicit and use evidence of student thinking to understand  assumptions/beliefs about learning math?

We used the following exploratory talking points from Elizabeth Statmore:

To learn more about cultivating exploratory talk, read #TMC14 GWWG: Talking Points Activity – Cultivating Exploratory Talk through a Growth Mindset Activity.

What is we use powerful tools to elicit student thinking? How might we learn about students to deeply understand them as mathematicians?

And then, what actions do we take to ensure mathematical success for all?

#ChangeTheFuture

#EmbraceAmbitiousTeaching

#EmboldenYourInnerMathematician


Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.

Statmore, Elizabeth. “Cheesemonkey Wonders.” #TMC14 GWWG: Talking Points Activity – Cultivating Exploratory Talk through a Growth Mindset Activity, 1 Jan. 1970.

Embolden Your Inner Mathematician: Week 1 agenda

Elicit and use evidence of student thinking.

Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical understanding and to adjust instruction continually in ways that support and extend learning.
Principles to Actions: Ensuring Mathematical Success for All

Slide deck

7:15 Welcome, Materials, Q&A

7:30 Establishing Intent, Purpose, Norm Setting

  • Ambitious Teaching
  • NCTM’s Principles to Action
  • Read The Dot
7:45 Break for Birthday Breakfast
7:55 Talking Points from Elizabeth Statmore (@chessemonkeysf)

8:10 Subitizing (a.k.a. Dot Talks)
8:30 Number Talk
8:55 Planning

  • Anticipate
  • Plan to Monitor
  • Sequence anticipated responses
9:05 Closure
9:15 End of session

Homework:

Additional challenges


Kaplinsky, Robert, and Peter Morris. “Closest to One.” Open Middle.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.

Statmore, Elizabeth. “Cheesemonkey Wonders.” #TMC14 GWWG: Talking Points Activity – Cultivating Exploratory Talk through a Growth Mindset Activity, 1 Jan. 1970.

Sketch notes from #TMC17 (a.k.a. Twitter Math Camp)

Becky Holden (@bholden86) and I attended Twitter Math Camp (#TMC17) at Holy Innocents Episcopal School in Atlanta, GA from Thursday, July 27 to Sunday, July 30.

This conference is by teachers, for teachers. The structure of TMC contains the following lengths of presentations:

  • Morning sessions (One session that meets Thursday, Friday and Saturday mornings for 2 hours each morning)
  • Afternoon sessions (Individual 1/2 hour sessions on Thursday)
  • Afternoon sessions (Individual 1 hour sessions Thursday, Friday and Saturday)

To honor Carl Oliver‘s (@carloliwitter) #PushSend request/challenge, here are my sketch notes from the sessions I attended.

Differentiating CCSS Algebra 1
— from drab to fab using Exeter Math 1 & Exploratory Talk
Elizabeth Statmore (@cheesemonkeysf)

The Politics(?) of Mathematics Teaching
Grace Chen (@graceachen)

What does it mean to say that mathematics teaching is political, and what does that mean for our moral and ethical responsibility as mathematics teachers?

Bridging elementary skills & concepts to high school & beyond
Glenn Waddell, Jr. (@gwaddellnvhs)

Micro-decisions in Questioning
David Petersen (@calcdave)

All I Really Need To Know I Learned From The MTBoS
…Not Really, But Close
Graham Fletcher (@gfletchy)

Hitting The Darn ‘Send’ Button
Carl Oliver (@carloliwitter)

Practical Ideas on the Kind of Coaching
We Need to Provide and Demand
Steve Leinwand (@steve_leinwand)

What is not captured in my notes is play: game night, trivia, crocheting, and tons of fun.

How might we grow, learn, and play in community when together and when apart?