Tag Archives: @jwilson828

Embolden Your Inner Mathematician: week 7 agenda

Implement tasks that promote reasoning and problem solving.

Effective teaching of mathematics engages students in solving and discussing tasks that promote mathematical reasoning and problem solving and allow multiple entry points and varied solution strategies.

Principles to Actions: Ensuring Mathematical Success for All

Slide deck

15 min Homework discussion, Q&A,
Problem of the Week
15 min Number talk and
birthday breakfast
45 min Numeracy through Literature –
Notice and Note

Those Darn Squirrels!

35 min

 

Designing for Learning

Read, select, and design –
anticipate and connect

  • Read and discuss
  • Brainstorm important concepts and
    anticipate how learners will think and
    share using Post-it notes
  • Connect to essential learnings or skills
10 min Closure
End of session

Possibilities:

Learning Progressions:

  • I can demonstrate mathematical flexibity to show what I know more than one way.
  • I can show my work so that a reader understands without asking questions.

Standards for Mathematical Practice

  • I can make sense of tasks and persevere in solving them.

  • I can construct a viable argument and critique the reasoning of others.

“Connect Extend Challenge A Routine for Connecting New Ideas to Prior Knowledge.” Visible Thinking, Harvard Project Zero.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Gough, Jill, and Jennifer Wilson. “#LL2LU Learning Progressions: SMP.” Experiments in Learning by Doing or Easing the Hurry Syndrome. WordPress, 04 Aug. 2014. Web. 11 Mar. 2017.

Gough, Jill, and Kato Nims. “#LL2LU Learning Progressions.” Experiments in Learning by Doing or Colorful Learning. WordPress, 04 Aug. 2014. Web. 11 Mar. 2017.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.


Previous Embolden Your Inner Mathematician agendas:

Embolden Your Inner Mathematician: week 6 agenda

Use and connect mathematical representations.

Effective teaching of mathematics engages students in making connections among mathematical representations to deepen understanding of mathematics concepts and procedures and as tools for problem solving.

Principles to Actions: Ensuring Mathematical Success for All

Slide deck

15 min Homework discussion, Q&A, Problem of the Week
15 min Deepening: Use and connect representations
15 min Construct a viable argument and critique the reasoning of others
20 min 5 Practices: Anticipate, Monitor, Select, Sequence, Connect
40 min Visual Patterns – Routines for Reasoning
15 min Closure
End of session

Homework:

  • Practice finding and connecting multiple representations in our Number Talks
  • Read: Use and Connect Mathematical Representations
    • What the Research Says: Representations and Student Learning (pp. 138-140)
    • Promoting Equity by Using and Connecting Mathematical Representations (pp. 140-141)
    • Check out Kristin Gray’s (@MathMinds) response to Vicki’s tweet (shown below) and try to answer the question for yourself for a Number Talk you’ve done or will do this week.

Standards for Mathematical Practice

  • I can make sense of tasks and persevere in solving them.

  • I can construct a viable argument and critique the reasoning of others.

“Connect Extend Challenge A Routine for Connecting New Ideas to Prior Knowledge.” Visible Thinking, Harvard Project Zero.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Gough, Jill, and Jennifer Wilson. “#LL2LU Learning Progressions: SMP.” Experiments in Learning by Doing or Easing the Hurry Syndrome. WordPress, 04 Aug. 2014. Web. 11 Mar. 2017.

Gough, Jill, and Kato Nims. “#LL2LU Learning Progressions.” Experiments in Learning by Doing or Colorful Learning. WordPress, 04 Aug. 2014. Web. 11 Mar. 2017.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.


Previous Embolden Your Inner Mathematician agendas:

Embolden Your Inner Mathematician Week 1: Number Talks

How might we deepen our understanding of NCTM’s teaching practices? What if we team to learn and practice?

For our first session of Embolden Your Inner Mathematician, we focus on Subitizing and Number Talks: Elicit and use evidence of student thinking.

From Principles to Actions: Ensuring Mathematical Success for All

Elicit and use evidence of student thinking.
Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical understanding and to adjust instruction continually in ways that support and extend learning.

And, from Taking Action: Implementing Effective Mathematics Teaching Practices in K-Grade 5

Meeting the demands of world-class standards for student learning requires teachers to engage in what as been referred to as “ambitious teaching.” Ambitious teaching stands in sharp contrast to what many teachers experienced themselves as learners of mathematics. (Smith, 3 pag.)

In ambitious teaching, the teacher engages students in challenging tasks and collaborative inquiry, and then observes and listens as students work so that she or he can provide an appropriate level of support to diverse learners.  The goal is to ensure that each and every student succeeds in doing meaningful, high-quality work, not simply executing procedures with speed and accuracy. (Smith, 4 pag.)

Worth repeating:

The goal is to ensure that each and every student succeeds in doing meaningful, high-quality work, not simply executing procedures with speed and accuracy.

How might we foster curiosity, creativity, and critical reasoning while deepening understanding? What if we listen to what our students notice and wonder?

My daughter (7th grade) and I were walking through our local Walgreens when I hear her say “Wow, I wonder…” I doubled back to take this photo.

To see how we used this image in our session to subitize (in chunks) and to investigate the questions that arose from our wonderings, look through our slide deck for this session.

From  NCTM’s 5 Practices, we know that we should do the math ourselves, predict (anticipate) what students will produce, and brainstorm what will help students most when in productive struggle and when in destructive struggle. What if we build the habit of showing what we know more than one way to add layers of depth to understanding?

When mathematics classrooms focus on numbers, status differences between students often emerge, to the detriment of classroom culture and learning, with some students stating that work is “easy” or “hard” or announcing they have “finished” after racing through a worksheet. But when the same content is taught visually, it is our experience that the status differences that so often beleaguer mathematics classrooms, disappear.  – Jo Boaler

What if we ask ourselves what other ways can we add layers of depth so that students make sense of this task? How might we better serve our learners if we elicit and use evidence of student thinking to make next instructional decisions? 

#ChangeTheFuture

#EmbraceAmbitiousTeaching

#EmboldenYourInnerMathematician


Boaler, Jo, Lang Chen, Cathy Williams, and Montserrat Cordero. “Seeing as Understanding: The Importance of Visual Mathematics for Our Brain and Learning.” Journal of Applied & Computational Mathematics 05.05 (2016): n. pag. Youcubed. Standford University, 12 May. 2016. Web. 18 Mar. 2017.

Leinwand, Steve. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA.: National Council of Teachers of Mathematics, 2014. (p. 46) Print.

Smith, Margaret Schwan., et al. Taking Action: Implementing Effective Mathematics Teaching Practices in Grades K-5. The National Council of Teachers of Mathematics, 2017.

Summer PD: Day 1 Make Sense; Persevere

Summer Literacy and Mathematics Professional Learning
June 5-9, 2017
Day 1 – Make Sense and Persevere
Jill Gough and Becky Holden

Today’s focus and essential learning:

We want all mathematicians to be able to say:

I can make sense of tasks
and persevere in solving them.

(but… what if I can’t?)

Great teachers lead us just far enough down a path so we can challenge for ourselves. They provide us just enough insight so we can work toward a solution that makes us, makes me want to jump up and shout out the solution to the world, makes me want to step to the next higher level.  Great teachers somehow make us want to ask the questions that they want us to answer, overcome the challenge that they, because they are our teacher, believe we need to overcome. (Lichtman, 20 pag.)

… designed to help students slow down and really think about problems rather than jumping right into solving them. In making this a routine approach to solving problems, she provided students with a lot of practice and helped them develop a habit of mind for reading and solving problems.  (Flynn, 19 pag.)

Screen Shot 2017-06-06 at 7.53.02 AM.png

Agenda and Tasks:

Slide deck:

Resources:

#SlowMath: look for meaning before the procedure

In her #CMCS15 session, Jennifer Wilson (@jwilson828) asks:

How might we leverage technology to build procedural fluency from conceptual understanding?  What if we encourage sketching to show connections?

What if we explore right triangle trigonometry and  equations of circles through the lens of the Slow Math Movement?  Will we learn more deeply, identify patterns, and make connections?

How might we promote and facilitate deep practice?

This is not ordinary practice. This is something else: a highly targeted, error-focused process. Something is growing, being built. (Coyle, 4 pag.)

What if we S…L…O…W… down?

How might we leverage technology to take deliberate, individualized dynamic actions? What will we notice and observe? Can we Will we What happens when we will take time to note what we are noticing and track our thinking?

CTP_mVLVEAA8DEY

What is lost by the time we save being efficient, by telling? How might we ask rather than tell?

#SlowMath Movement = #DeepPractice + #AskDontTell

What if we offer more opportunities to deepen understanding by investigation, inquiry, and deep practice?


Coyle, Daniel (2009-04-16). The Talent Code: Greatness Isn’t Born. It’s Grown. Here’s How. Random House, Inc.. Kindle Edition.

Struggle: pay attention; keep moving forward – The Talent Code VTR SPW

What if we reframe mistakes to be billed as opportunities to learn? If we truly believe in fail up, fail forward, fail faster, how do we leverage the quick bursts of failure mistakes struggle to propel learning in a new direction?

Struggle is not optional—it’s neurologically required: in order to get your skill circuit to fire optimally, you must by definition fire the circuit suboptimally; you must make mistakes and pay attention to those mistakes; you must slowly teach your circuit. You must also keep firing that circuit—i.e., practicing—in order to keep myelin functioning properly. After all, myelin is living tissue. (Coyle, 43 pag.)

How might we position each learner to work at the edge of their ability, reaching to a new goal,  capture failure and turn it into skill?

Because the best way to build a good circuit is to fire it, attend to mistakes, then fire it again, over and over. Struggle is not an option: it’s a biological requirement. (Coyle, 34 pag.)

How might we establish a community norm that calls for a trail of mistakes to show struggle and evidence of learning? What if paying attention to mistakes is an essential to learn? How might we celebrate the trail that leads to success, to keep moving forward?

TalentCode-Chpt2

Summer Reading using VTR: Sentence-Phrase-Word:
The Talent Code
Chapter 2: The Deep Practice Cell

How might we target struggle so that it is productive? For what should we reach? What if expand our master coach toolkit to include a pathway to sense making and perseverance?

SMP-1: Make Sense of Problems and Persevere #LL2LU

What if we target productive struggle through process? How might we lead learners to level up by helping them reach? When learners are thrashing around blindly, how might we serve as refuge for support, encouragement, and a push in a new direction?


Coyle, Daniel (2009-04-16). The Talent Code: Greatness Isn’t Born. It’s Grown. Here’s How. Random House, Inc.. Kindle Edition.

SMP-8: look for and express regularity in repeated reasoning #LL2LU

Screen Shot 2015-04-04 at 5.03.13 PM

We want every learner in our care to be able to say

I can look for and express regularity in repeated reasoning. (CCSS.MATH.PRACTICE.MP8)

But what if I can’t look for and express regularity in repeated reasoning yet? What if I need help? How might we make a pathway for success?

Level 4
I can attend to precision as I construct a viable argument to express regularity in repeated reasoning.

Level 3
I can look for and express regularity in repeated reasoning.

Level 2
I can identify and describe patterns and regularities, and I can begin to develop generalizations.

Level 1
I can notice and note what changes and what stays the same when performing calculations or interacting with geometric figures.

What do you notice? What changes? What stays the same?

Can we use CAS (computer algebra system) to help our students practice look for and express regularity in repeated reasoning?

What do we need to factor for the result to be (x-4)(x+4)?
What do we need to factor for the result to be (x-9)(x+9)?
What will the result be if we factor x²-121?
What will the result be if we factor x²-a2?

Screen Shot 2015-04-05 at 10.10.10 AM

We can also explore over what set of numbers we are factoring using the syntax we have been using. And what happens if we factor x²+1. (And then connect the result to the graph of y=x²+1.)

What happens if we factor over the set of real numbers?

Screen Shot 2015-04-05 at 10.12.39 AM

Or over the set of complex numbers? 

Screen Shot 2015-04-05 at 2.17.14 PM

What about expanding the square of a binomial? 

What changes? What stays the same? What will the result be if we expand (x+5)²?  Or (x+a)²?  Or (x-a)²? 

Screen Shot 2015-04-05 at 2.17.56 PM

What about expanding the cube of a binomial?  Or expanding (x+1)^n, or (x+y)^n?

Screen Shot 2015-04-05 at 2.18.14 PM

What if we are looking at powers of i?

Screen Shot 2015-04-05 at 2.18.31 PM

We can look for and express regularity in repeated reasoning when factoring the sum or difference of cubes. Or simplifying radicals. Or solving equations.

Through reflection and conversation, students make connections and begin to generalize results. What opportunities are you giving your students to look for and express regularity in repeated reasoning? What content are you teaching this week that you can #AskDontTell?

[Cross-posted on Easing the Hurry Syndrome]